| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domnsym |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) |
| 2 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| 3 |
|
infdif |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≈ 𝐴 ) |
| 4 |
3
|
ensymd |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ 𝐵 ) ) |
| 5 |
|
sdomentr |
⊢ ( ( 𝐵 ≺ 𝐴 ∧ 𝐴 ≈ ( 𝐴 ∖ 𝐵 ) ) → 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) |
| 6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → 𝐵 ≺ ( 𝐴 ∖ 𝐵 ) ) |
| 7 |
1 6
|
nsyl3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴 ) → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) |
| 8 |
7
|
3expia |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵 ≺ 𝐴 → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 9 |
8
|
3adant2 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵 ≺ 𝐴 → ¬ ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 10 |
9
|
con2d |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → ¬ 𝐵 ≺ 𝐴 ) ) |
| 11 |
|
domtri2 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| 12 |
11
|
3adant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ≼ 𝐵 ↔ ¬ 𝐵 ≺ 𝐴 ) ) |
| 13 |
10 12
|
sylibrd |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| 14 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ∈ dom card ) |
| 15 |
|
difss |
⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 |
| 16 |
|
ssdomg |
⊢ ( 𝐴 ∈ dom card → ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) ) |
| 17 |
14 15 16
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ) |
| 18 |
|
domtr |
⊢ ( ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) |
| 19 |
18
|
ex |
⊢ ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐴 → ( 𝐴 ≼ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ≼ 𝐵 → ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ) ) |
| 21 |
13 20
|
impbid |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∖ 𝐵 ) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵 ) ) |