Metamath Proof Explorer


Theorem infdif2

Description: Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infdif2 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴𝐵 ) ≼ 𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 domnsym ( ( 𝐴𝐵 ) ≼ 𝐵 → ¬ 𝐵 ≺ ( 𝐴𝐵 ) )
2 simp3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵𝐴 )
3 infdif ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )
4 3 ensymd ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≈ ( 𝐴𝐵 ) )
5 sdomentr ( ( 𝐵𝐴𝐴 ≈ ( 𝐴𝐵 ) ) → 𝐵 ≺ ( 𝐴𝐵 ) )
6 2 4 5 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵 ≺ ( 𝐴𝐵 ) )
7 1 6 nsyl3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ¬ ( 𝐴𝐵 ) ≼ 𝐵 )
8 7 3expia ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵𝐴 → ¬ ( 𝐴𝐵 ) ≼ 𝐵 ) )
9 8 3adant2 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐵𝐴 → ¬ ( 𝐴𝐵 ) ≼ 𝐵 ) )
10 9 con2d ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴𝐵 ) ≼ 𝐵 → ¬ 𝐵𝐴 ) )
11 domtri2 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
12 11 3adant3 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴𝐵 ↔ ¬ 𝐵𝐴 ) )
13 10 12 sylibrd ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴𝐵 ) ≼ 𝐵𝐴𝐵 ) )
14 simp1 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ∈ dom card )
15 difss ( 𝐴𝐵 ) ⊆ 𝐴
16 ssdomg ( 𝐴 ∈ dom card → ( ( 𝐴𝐵 ) ⊆ 𝐴 → ( 𝐴𝐵 ) ≼ 𝐴 ) )
17 14 15 16 mpisyl ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴𝐵 ) ≼ 𝐴 )
18 domtr ( ( ( 𝐴𝐵 ) ≼ 𝐴𝐴𝐵 ) → ( 𝐴𝐵 ) ≼ 𝐵 )
19 18 ex ( ( 𝐴𝐵 ) ≼ 𝐴 → ( 𝐴𝐵 → ( 𝐴𝐵 ) ≼ 𝐵 ) )
20 17 19 syl ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴𝐵 → ( 𝐴𝐵 ) ≼ 𝐵 ) )
21 13 20 impbid ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴𝐵 ) ≼ 𝐵𝐴𝐵 ) )