| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difeq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  ∅ ) ) | 
						
							| 2 |  | dif0 | ⊢ ( 𝐴  ∖  ∅ )  =  𝐴 | 
						
							| 3 | 1 2 | eqtrdi | ⊢ ( 𝑥  =  ∅  →  ( 𝐴  ∖  𝑥 )  =  𝐴 ) | 
						
							| 4 | 3 | breq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐴  ∖  𝑥 )  ≈  𝐴  ↔  𝐴  ≈  𝐴 ) ) | 
						
							| 5 | 4 | imbi2d | ⊢ ( 𝑥  =  ∅  →  ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑥 )  ≈  𝐴 )  ↔  ( ω  ≼  𝐴  →  𝐴  ≈  𝐴 ) ) ) | 
						
							| 6 |  | difeq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 7 | 6 | breq1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐴  ∖  𝑥 )  ≈  𝐴  ↔  ( 𝐴  ∖  𝑦 )  ≈  𝐴 ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑥 )  ≈  𝐴 )  ↔  ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑦 )  ≈  𝐴 ) ) ) | 
						
							| 9 |  | difeq2 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  ( 𝑦  ∪  { 𝑧 } ) ) ) | 
						
							| 10 |  | difun1 | ⊢ ( 𝐴  ∖  ( 𝑦  ∪  { 𝑧 } ) )  =  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } ) | 
						
							| 11 | 9 10 | eqtrdi | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( 𝐴  ∖  𝑥 )  =  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( 𝐴  ∖  𝑥 )  ≈  𝐴  ↔  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑥 )  ≈  𝐴 )  ↔  ( ω  ≼  𝐴  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) ) ) | 
						
							| 14 |  | difeq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐴  ∖  𝑥 )  =  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 15 | 14 | breq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐴  ∖  𝑥 )  ≈  𝐴  ↔  ( 𝐴  ∖  𝐵 )  ≈  𝐴 ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑥  =  𝐵  →  ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑥 )  ≈  𝐴 )  ↔  ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝐵 )  ≈  𝐴 ) ) ) | 
						
							| 17 |  | reldom | ⊢ Rel   ≼ | 
						
							| 18 | 17 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 19 |  | enrefg | ⊢ ( 𝐴  ∈  V  →  𝐴  ≈  𝐴 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ω  ≼  𝐴  →  𝐴  ≈  𝐴 ) | 
						
							| 21 |  | domen2 | ⊢ ( ( 𝐴  ∖  𝑦 )  ≈  𝐴  →  ( ω  ≼  ( 𝐴  ∖  𝑦 )  ↔  ω  ≼  𝐴 ) ) | 
						
							| 22 | 21 | biimparc | ⊢ ( ( ω  ≼  𝐴  ∧  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ω  ≼  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 23 |  | infdifsn | ⊢ ( ω  ≼  ( 𝐴  ∖  𝑦 )  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( ω  ≼  𝐴  ∧  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 25 |  | entr | ⊢ ( ( ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  ( 𝐴  ∖  𝑦 )  ∧  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) | 
						
							| 26 | 24 25 | sylancom | ⊢ ( ( ω  ≼  𝐴  ∧  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) | 
						
							| 27 | 26 | ex | ⊢ ( ω  ≼  𝐴  →  ( ( 𝐴  ∖  𝑦 )  ≈  𝐴  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) ) | 
						
							| 28 | 27 | a2i | ⊢ ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ( ω  ≼  𝐴  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑦  ∈  Fin  →  ( ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝑦 )  ≈  𝐴 )  →  ( ω  ≼  𝐴  →  ( ( 𝐴  ∖  𝑦 )  ∖  { 𝑧 } )  ≈  𝐴 ) ) ) | 
						
							| 30 | 5 8 13 16 20 29 | findcard2 | ⊢ ( 𝐵  ∈  Fin  →  ( ω  ≼  𝐴  →  ( 𝐴  ∖  𝐵 )  ≈  𝐴 ) ) | 
						
							| 31 | 30 | impcom | ⊢ ( ( ω  ≼  𝐴  ∧  𝐵  ∈  Fin )  →  ( 𝐴  ∖  𝐵 )  ≈  𝐴 ) |