Step |
Hyp |
Ref |
Expression |
1 |
|
brdomi |
⊢ ( ω ≼ 𝐴 → ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) |
2 |
1
|
adantr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) |
3 |
|
reldom |
⊢ Rel ≼ |
4 |
3
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐴 ∈ V ) |
6 |
|
simplr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐵 ∈ 𝐴 ) |
7 |
|
f1f |
⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω ⟶ 𝐴 ) |
8 |
7
|
adantl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω ⟶ 𝐴 ) |
9 |
|
peano1 |
⊢ ∅ ∈ ω |
10 |
|
ffvelrn |
⊢ ( ( 𝑓 : ω ⟶ 𝐴 ∧ ∅ ∈ ω ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
12 |
|
difsnen |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝐴 ∧ ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
13 |
5 6 11 12
|
syl3anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
14 |
|
vex |
⊢ 𝑓 ∈ V |
15 |
|
f1f1orn |
⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 : ω –1-1-onto→ ran 𝑓 ) |
16 |
15
|
adantl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω –1-1-onto→ ran 𝑓 ) |
17 |
|
f1oen3g |
⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : ω –1-1-onto→ ran 𝑓 ) → ω ≈ ran 𝑓 ) |
18 |
14 16 17
|
sylancr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ran 𝑓 ) |
19 |
18
|
ensymd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ≈ ω ) |
20 |
3
|
brrelex1i |
⊢ ( ω ≼ 𝐴 → ω ∈ V ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ∈ V ) |
22 |
|
limom |
⊢ Lim ω |
23 |
22
|
limenpsi |
⊢ ( ω ∈ V → ω ≈ ( ω ∖ { ∅ } ) ) |
24 |
21 23
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ( ω ∖ { ∅ } ) ) |
25 |
14
|
resex |
⊢ ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) ∈ V |
26 |
|
simpr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 : ω –1-1→ 𝐴 ) |
27 |
|
difss |
⊢ ( ω ∖ { ∅ } ) ⊆ ω |
28 |
|
f1ores |
⊢ ( ( 𝑓 : ω –1-1→ 𝐴 ∧ ( ω ∖ { ∅ } ) ⊆ ω ) → ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
29 |
26 27 28
|
sylancl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
30 |
|
f1oen3g |
⊢ ( ( ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) ∈ V ∧ ( 𝑓 ↾ ( ω ∖ { ∅ } ) ) : ( ω ∖ { ∅ } ) –1-1-onto→ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) → ( ω ∖ { ∅ } ) ≈ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
31 |
25 29 30
|
sylancr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ω ∖ { ∅ } ) ≈ ( 𝑓 “ ( ω ∖ { ∅ } ) ) ) |
32 |
|
f1orn |
⊢ ( 𝑓 : ω –1-1-onto→ ran 𝑓 ↔ ( 𝑓 Fn ω ∧ Fun ◡ 𝑓 ) ) |
33 |
32
|
simprbi |
⊢ ( 𝑓 : ω –1-1-onto→ ran 𝑓 → Fun ◡ 𝑓 ) |
34 |
|
imadif |
⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) ) |
35 |
16 33 34
|
3syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) ) |
36 |
|
f1fn |
⊢ ( 𝑓 : ω –1-1→ 𝐴 → 𝑓 Fn ω ) |
37 |
36
|
adantl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝑓 Fn ω ) |
38 |
|
fnima |
⊢ ( 𝑓 Fn ω → ( 𝑓 “ ω ) = ran 𝑓 ) |
39 |
37 38
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ω ) = ran 𝑓 ) |
40 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn ω ∧ ∅ ∈ ω ) → { ( 𝑓 ‘ ∅ ) } = ( 𝑓 “ { ∅ } ) ) |
41 |
37 9 40
|
sylancl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → { ( 𝑓 ‘ ∅ ) } = ( 𝑓 “ { ∅ } ) ) |
42 |
41
|
eqcomd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ { ∅ } ) = { ( 𝑓 ‘ ∅ ) } ) |
43 |
39 42
|
difeq12d |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝑓 “ ω ) ∖ ( 𝑓 “ { ∅ } ) ) = ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
44 |
35 43
|
eqtrd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 “ ( ω ∖ { ∅ } ) ) = ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
45 |
31 44
|
breqtrd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ω ∖ { ∅ } ) ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
46 |
|
entr |
⊢ ( ( ω ≈ ( ω ∖ { ∅ } ) ∧ ( ω ∖ { ∅ } ) ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) → ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
47 |
24 45 46
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
48 |
|
entr |
⊢ ( ( ran 𝑓 ≈ ω ∧ ω ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) → ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
49 |
19 47 48
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
50 |
|
difexg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∖ ran 𝑓 ) ∈ V ) |
51 |
|
enrefg |
⊢ ( ( 𝐴 ∖ ran 𝑓 ) ∈ V → ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) |
52 |
5 50 51
|
3syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) |
53 |
|
disjdif |
⊢ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ |
54 |
53
|
a1i |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) |
55 |
|
difss |
⊢ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ⊆ ran 𝑓 |
56 |
|
ssrin |
⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ⊆ ran 𝑓 → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) ) |
57 |
55 56
|
ax-mp |
⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) |
58 |
|
sseq0 |
⊢ ( ( ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) ⊆ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) ∧ ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) |
59 |
57 53 58
|
mp2an |
⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ |
60 |
59
|
a1i |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) |
61 |
|
unen |
⊢ ( ( ( ran 𝑓 ≈ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∧ ( 𝐴 ∖ ran 𝑓 ) ≈ ( 𝐴 ∖ ran 𝑓 ) ) ∧ ( ( ran 𝑓 ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ∧ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∩ ( 𝐴 ∖ ran 𝑓 ) ) = ∅ ) ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) ≈ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) ) |
62 |
49 52 54 60 61
|
syl22anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) ≈ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) ) |
63 |
8
|
frnd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ran 𝑓 ⊆ 𝐴 ) |
64 |
|
undif |
⊢ ( ran 𝑓 ⊆ 𝐴 ↔ ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) = 𝐴 ) |
65 |
63 64
|
sylib |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) = 𝐴 ) |
66 |
|
uncom |
⊢ ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) = ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
67 |
|
eldifn |
⊢ ( ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) → ¬ ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) |
68 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn ω ∧ ∅ ∈ ω ) → ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) |
69 |
37 9 68
|
sylancl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝑓 ‘ ∅ ) ∈ ran 𝑓 ) |
70 |
67 69
|
nsyl3 |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ¬ ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) ) |
71 |
|
disjsn |
⊢ ( ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ ↔ ¬ ( 𝑓 ‘ ∅ ) ∈ ( 𝐴 ∖ ran 𝑓 ) ) |
72 |
70 71
|
sylibr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ ) |
73 |
|
undif4 |
⊢ ( ( ( 𝐴 ∖ ran 𝑓 ) ∩ { ( 𝑓 ‘ ∅ ) } ) = ∅ → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
74 |
72 73
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
75 |
|
uncom |
⊢ ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) = ( ran 𝑓 ∪ ( 𝐴 ∖ ran 𝑓 ) ) |
76 |
75 65
|
eqtrid |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) = 𝐴 ) |
77 |
76
|
difeq1d |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ( 𝐴 ∖ ran 𝑓 ) ∪ ran 𝑓 ) ∖ { ( 𝑓 ‘ ∅ ) } ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
78 |
74 77
|
eqtrd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( 𝐴 ∖ ran 𝑓 ) ∪ ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
79 |
66 78
|
eqtrid |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( ( ran 𝑓 ∖ { ( 𝑓 ‘ ∅ ) } ) ∪ ( 𝐴 ∖ ran 𝑓 ) ) = ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
80 |
62 65 79
|
3brtr3d |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ) |
81 |
80
|
ensymd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ≈ 𝐴 ) |
82 |
|
entr |
⊢ ( ( ( 𝐴 ∖ { 𝐵 } ) ≈ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ∧ ( 𝐴 ∖ { ( 𝑓 ‘ ∅ ) } ) ≈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
83 |
13 81 82
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑓 : ω –1-1→ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
84 |
2 83
|
exlimddv |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
85 |
|
difsn |
⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∖ { 𝐵 } ) = 𝐴 ) |
86 |
85
|
adantl |
⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) = 𝐴 ) |
87 |
|
enrefg |
⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) |
88 |
4 87
|
syl |
⊢ ( ω ≼ 𝐴 → 𝐴 ≈ 𝐴 ) |
89 |
88
|
adantr |
⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → 𝐴 ≈ 𝐴 ) |
90 |
86 89
|
eqbrtrd |
⊢ ( ( ω ≼ 𝐴 ∧ ¬ 𝐵 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |
91 |
84 90
|
pm2.61dan |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝐵 } ) ≈ 𝐴 ) |