| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi | ⊢ ( ω  ≼  𝐴  →  ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) | 
						
							| 3 |  | reldom | ⊢ Rel   ≼ | 
						
							| 4 | 3 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝐴  ∈  V ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝐵  ∈  𝐴 ) | 
						
							| 7 |  | f1f | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝑓 : ω ⟶ 𝐴 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝑓 : ω ⟶ 𝐴 ) | 
						
							| 9 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ∅  ∈  ω )  →  ( 𝑓 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 12 |  | difsnen | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  𝐴  ∧  ( 𝑓 ‘ ∅ )  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 13 | 5 6 11 12 | syl3anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 14 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 15 |  | f1f1orn | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝑓 : ω –1-1-onto→ ran  𝑓 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝑓 : ω –1-1-onto→ ran  𝑓 ) | 
						
							| 17 |  | f1oen3g | ⊢ ( ( 𝑓  ∈  V  ∧  𝑓 : ω –1-1-onto→ ran  𝑓 )  →  ω  ≈  ran  𝑓 ) | 
						
							| 18 | 14 16 17 | sylancr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ω  ≈  ran  𝑓 ) | 
						
							| 19 | 18 | ensymd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ran  𝑓  ≈  ω ) | 
						
							| 20 | 3 | brrelex1i | ⊢ ( ω  ≼  𝐴  →  ω  ∈  V ) | 
						
							| 21 | 20 | ad2antrr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ω  ∈  V ) | 
						
							| 22 |  | limom | ⊢ Lim  ω | 
						
							| 23 | 22 | limenpsi | ⊢ ( ω  ∈  V  →  ω  ≈  ( ω  ∖  { ∅ } ) ) | 
						
							| 24 | 21 23 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ω  ≈  ( ω  ∖  { ∅ } ) ) | 
						
							| 25 | 14 | resex | ⊢ ( 𝑓  ↾  ( ω  ∖  { ∅ } ) )  ∈  V | 
						
							| 26 |  | simpr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝑓 : ω –1-1→ 𝐴 ) | 
						
							| 27 |  | difss | ⊢ ( ω  ∖  { ∅ } )  ⊆  ω | 
						
							| 28 |  | f1ores | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  ( ω  ∖  { ∅ } )  ⊆  ω )  →  ( 𝑓  ↾  ( ω  ∖  { ∅ } ) ) : ( ω  ∖  { ∅ } ) –1-1-onto→ ( 𝑓  “  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓  ↾  ( ω  ∖  { ∅ } ) ) : ( ω  ∖  { ∅ } ) –1-1-onto→ ( 𝑓  “  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 30 |  | f1oen3g | ⊢ ( ( ( 𝑓  ↾  ( ω  ∖  { ∅ } ) )  ∈  V  ∧  ( 𝑓  ↾  ( ω  ∖  { ∅ } ) ) : ( ω  ∖  { ∅ } ) –1-1-onto→ ( 𝑓  “  ( ω  ∖  { ∅ } ) ) )  →  ( ω  ∖  { ∅ } )  ≈  ( 𝑓  “  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 31 | 25 29 30 | sylancr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ω  ∖  { ∅ } )  ≈  ( 𝑓  “  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 32 |  | f1orn | ⊢ ( 𝑓 : ω –1-1-onto→ ran  𝑓  ↔  ( 𝑓  Fn  ω  ∧  Fun  ◡ 𝑓 ) ) | 
						
							| 33 | 32 | simprbi | ⊢ ( 𝑓 : ω –1-1-onto→ ran  𝑓  →  Fun  ◡ 𝑓 ) | 
						
							| 34 |  | imadif | ⊢ ( Fun  ◡ 𝑓  →  ( 𝑓  “  ( ω  ∖  { ∅ } ) )  =  ( ( 𝑓  “  ω )  ∖  ( 𝑓  “  { ∅ } ) ) ) | 
						
							| 35 | 16 33 34 | 3syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓  “  ( ω  ∖  { ∅ } ) )  =  ( ( 𝑓  “  ω )  ∖  ( 𝑓  “  { ∅ } ) ) ) | 
						
							| 36 |  | f1fn | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝑓  Fn  ω ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝑓  Fn  ω ) | 
						
							| 38 |  | fnima | ⊢ ( 𝑓  Fn  ω  →  ( 𝑓  “  ω )  =  ran  𝑓 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓  “  ω )  =  ran  𝑓 ) | 
						
							| 40 |  | fnsnfv | ⊢ ( ( 𝑓  Fn  ω  ∧  ∅  ∈  ω )  →  { ( 𝑓 ‘ ∅ ) }  =  ( 𝑓  “  { ∅ } ) ) | 
						
							| 41 | 37 9 40 | sylancl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  { ( 𝑓 ‘ ∅ ) }  =  ( 𝑓  “  { ∅ } ) ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓  “  { ∅ } )  =  { ( 𝑓 ‘ ∅ ) } ) | 
						
							| 43 | 39 42 | difeq12d | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( 𝑓  “  ω )  ∖  ( 𝑓  “  { ∅ } ) )  =  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 44 | 35 43 | eqtrd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓  “  ( ω  ∖  { ∅ } ) )  =  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 45 | 31 44 | breqtrd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ω  ∖  { ∅ } )  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 46 |  | entr | ⊢ ( ( ω  ≈  ( ω  ∖  { ∅ } )  ∧  ( ω  ∖  { ∅ } )  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) )  →  ω  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 47 | 24 45 46 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ω  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 48 |  | entr | ⊢ ( ( ran  𝑓  ≈  ω  ∧  ω  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) )  →  ran  𝑓  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 49 | 19 47 48 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ran  𝑓  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 50 |  | difexg | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∖  ran  𝑓 )  ∈  V ) | 
						
							| 51 |  | enrefg | ⊢ ( ( 𝐴  ∖  ran  𝑓 )  ∈  V  →  ( 𝐴  ∖  ran  𝑓 )  ≈  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 52 | 5 50 51 | 3syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝐴  ∖  ran  𝑓 )  ≈  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 53 |  | disjdif | ⊢ ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ | 
						
							| 54 | 53 | a1i | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ ) | 
						
							| 55 |  | difss | ⊢ ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ⊆  ran  𝑓 | 
						
							| 56 |  | ssrin | ⊢ ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ⊆  ran  𝑓  →  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  ⊆  ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) ) ) | 
						
							| 57 | 55 56 | ax-mp | ⊢ ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  ⊆  ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 58 |  | sseq0 | ⊢ ( ( ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  ⊆  ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) )  ∧  ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ )  →  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ ) | 
						
							| 59 | 57 53 58 | mp2an | ⊢ ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ ) | 
						
							| 61 |  | unen | ⊢ ( ( ( ran  𝑓  ≈  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∧  ( 𝐴  ∖  ran  𝑓 )  ≈  ( 𝐴  ∖  ran  𝑓 ) )  ∧  ( ( ran  𝑓  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅  ∧  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∩  ( 𝐴  ∖  ran  𝑓 ) )  =  ∅ ) )  →  ( ran  𝑓  ∪  ( 𝐴  ∖  ran  𝑓 ) )  ≈  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∪  ( 𝐴  ∖  ran  𝑓 ) ) ) | 
						
							| 62 | 49 52 54 60 61 | syl22anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ran  𝑓  ∪  ( 𝐴  ∖  ran  𝑓 ) )  ≈  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∪  ( 𝐴  ∖  ran  𝑓 ) ) ) | 
						
							| 63 | 8 | frnd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ran  𝑓  ⊆  𝐴 ) | 
						
							| 64 |  | undif | ⊢ ( ran  𝑓  ⊆  𝐴  ↔  ( ran  𝑓  ∪  ( 𝐴  ∖  ran  𝑓 ) )  =  𝐴 ) | 
						
							| 65 | 63 64 | sylib | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ran  𝑓  ∪  ( 𝐴  ∖  ran  𝑓 ) )  =  𝐴 ) | 
						
							| 66 |  | uncom | ⊢ ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∪  ( 𝐴  ∖  ran  𝑓 ) )  =  ( ( 𝐴  ∖  ran  𝑓 )  ∪  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 67 |  | eldifn | ⊢ ( ( 𝑓 ‘ ∅ )  ∈  ( 𝐴  ∖  ran  𝑓 )  →  ¬  ( 𝑓 ‘ ∅ )  ∈  ran  𝑓 ) | 
						
							| 68 |  | fnfvelrn | ⊢ ( ( 𝑓  Fn  ω  ∧  ∅  ∈  ω )  →  ( 𝑓 ‘ ∅ )  ∈  ran  𝑓 ) | 
						
							| 69 | 37 9 68 | sylancl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝑓 ‘ ∅ )  ∈  ran  𝑓 ) | 
						
							| 70 | 67 69 | nsyl3 | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ¬  ( 𝑓 ‘ ∅ )  ∈  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 71 |  | disjsn | ⊢ ( ( ( 𝐴  ∖  ran  𝑓 )  ∩  { ( 𝑓 ‘ ∅ ) } )  =  ∅  ↔  ¬  ( 𝑓 ‘ ∅ )  ∈  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 72 | 70 71 | sylibr | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( 𝐴  ∖  ran  𝑓 )  ∩  { ( 𝑓 ‘ ∅ ) } )  =  ∅ ) | 
						
							| 73 |  | undif4 | ⊢ ( ( ( 𝐴  ∖  ran  𝑓 )  ∩  { ( 𝑓 ‘ ∅ ) } )  =  ∅  →  ( ( 𝐴  ∖  ran  𝑓 )  ∪  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) )  =  ( ( ( 𝐴  ∖  ran  𝑓 )  ∪  ran  𝑓 )  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( 𝐴  ∖  ran  𝑓 )  ∪  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) )  =  ( ( ( 𝐴  ∖  ran  𝑓 )  ∪  ran  𝑓 )  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 75 |  | uncom | ⊢ ( ( 𝐴  ∖  ran  𝑓 )  ∪  ran  𝑓 )  =  ( ran  𝑓  ∪  ( 𝐴  ∖  ran  𝑓 ) ) | 
						
							| 76 | 75 65 | eqtrid | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( 𝐴  ∖  ran  𝑓 )  ∪  ran  𝑓 )  =  𝐴 ) | 
						
							| 77 | 76 | difeq1d | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( ( 𝐴  ∖  ran  𝑓 )  ∪  ran  𝑓 )  ∖  { ( 𝑓 ‘ ∅ ) } )  =  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 78 | 74 77 | eqtrd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( 𝐴  ∖  ran  𝑓 )  ∪  ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } ) )  =  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 79 | 66 78 | eqtrid | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( ( ran  𝑓  ∖  { ( 𝑓 ‘ ∅ ) } )  ∪  ( 𝐴  ∖  ran  𝑓 ) )  =  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 80 | 62 65 79 | 3brtr3d | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  𝐴  ≈  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 81 | 80 | ensymd | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } )  ≈  𝐴 ) | 
						
							| 82 |  | entr | ⊢ ( ( ( 𝐴  ∖  { 𝐵 } )  ≈  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } )  ∧  ( 𝐴  ∖  { ( 𝑓 ‘ ∅ ) } )  ≈  𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  𝐴 ) | 
						
							| 83 | 13 81 82 | syl2anc | ⊢ ( ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑓 : ω –1-1→ 𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  𝐴 ) | 
						
							| 84 | 2 83 | exlimddv | ⊢ ( ( ω  ≼  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  𝐴 ) | 
						
							| 85 |  | difsn | ⊢ ( ¬  𝐵  ∈  𝐴  →  ( 𝐴  ∖  { 𝐵 } )  =  𝐴 ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ω  ≼  𝐴  ∧  ¬  𝐵  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  =  𝐴 ) | 
						
							| 87 |  | enrefg | ⊢ ( 𝐴  ∈  V  →  𝐴  ≈  𝐴 ) | 
						
							| 88 | 4 87 | syl | ⊢ ( ω  ≼  𝐴  →  𝐴  ≈  𝐴 ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ω  ≼  𝐴  ∧  ¬  𝐵  ∈  𝐴 )  →  𝐴  ≈  𝐴 ) | 
						
							| 90 | 86 89 | eqbrtrd | ⊢ ( ( ω  ≼  𝐴  ∧  ¬  𝐵  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝐵 } )  ≈  𝐴 ) | 
						
							| 91 | 84 90 | pm2.61dan | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ∖  { 𝐵 } )  ≈  𝐴 ) |