Step |
Hyp |
Ref |
Expression |
1 |
|
unnum |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ dom card ) |
3 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
4 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
5 |
2 3 4
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ∈ dom card ) |
7 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ ( 𝐴 ∪ 𝐵 ) ∧ 𝐴 ∈ dom card ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ) |
9 |
|
djucomen |
⊢ ( ( 𝐴 ∈ dom card ∧ ( 𝐴 ∪ 𝐵 ) ∈ dom card ) → ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
10 |
6 2 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
11 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ∧ ( 𝐴 ⊔ ( 𝐴 ∪ 𝐵 ) ) ≈ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ) |
13 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ω ≼ 𝐴 ) |
14 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
15 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom card → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
16 |
2 14 15
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
17 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ω ≼ ( 𝐴 ∪ 𝐵 ) ) |
18 |
13 16 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ω ≼ ( 𝐴 ∪ 𝐵 ) ) |
19 |
|
infdjuabs |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ dom card ∧ ω ≼ ( 𝐴 ∪ 𝐵 ) ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
20 |
2 18 16 19
|
syl3anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
21 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ∧ ( ( 𝐴 ∪ 𝐵 ) ⊔ 𝐴 ) ≈ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ) |
22 |
12 20 21
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ) |
23 |
|
undjudom |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
25 |
|
sbth |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ∪ 𝐵 ) ∧ ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
26 |
22 24 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |