| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difun2 |
⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
| 2 |
|
df-dju |
⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
| 3 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 4 |
3
|
xpeq2i |
⊢ ( { 1o } × 1o ) = ( { 1o } × { ∅ } ) |
| 5 |
|
1oex |
⊢ 1o ∈ V |
| 6 |
|
0ex |
⊢ ∅ ∈ V |
| 7 |
5 6
|
xpsn |
⊢ ( { 1o } × { ∅ } ) = { 〈 1o , ∅ 〉 } |
| 8 |
4 7
|
eqtr2i |
⊢ { 〈 1o , ∅ 〉 } = ( { 1o } × 1o ) |
| 9 |
2 8
|
difeq12i |
⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) |
| 10 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ |
| 11 |
|
disj3 |
⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ ↔ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) ) |
| 12 |
10 11
|
mpbi |
⊢ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
| 13 |
1 9 12
|
3eqtr4i |
⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( { ∅ } × 𝐴 ) |
| 14 |
|
reldom |
⊢ Rel ≼ |
| 15 |
14
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 16 |
|
1on |
⊢ 1o ∈ On |
| 17 |
|
djudoml |
⊢ ( ( 𝐴 ∈ V ∧ 1o ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( ω ≼ 𝐴 → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
| 19 |
|
domtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) → ω ≼ ( 𝐴 ⊔ 1o ) ) |
| 20 |
18 19
|
mpdan |
⊢ ( ω ≼ 𝐴 → ω ≼ ( 𝐴 ⊔ 1o ) ) |
| 21 |
|
infdifsn |
⊢ ( ω ≼ ( 𝐴 ⊔ 1o ) → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 22 |
20 21
|
syl |
⊢ ( ω ≼ 𝐴 → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 23 |
13 22
|
eqbrtrrid |
⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 24 |
23
|
ensymd |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ ( { ∅ } × 𝐴 ) ) |
| 25 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 26 |
6 15 25
|
sylancr |
⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 27 |
|
entr |
⊢ ( ( ( 𝐴 ⊔ 1o ) ≈ ( { ∅ } × 𝐴 ) ∧ ( { ∅ } × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |