| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
| 2 |
|
reldom |
⊢ Rel ≼ |
| 3 |
2
|
brrelex2i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
| 4 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 5 |
1 3 4
|
syl2anc2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 6 |
|
xp2dju |
⊢ ( 2o × 𝐴 ) = ( 𝐴 ⊔ 𝐴 ) |
| 7 |
5 6
|
breqtrrdi |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ) |
| 8 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ dom card ) |
| 9 |
|
2onn |
⊢ 2o ∈ ω |
| 10 |
|
nnsdom |
⊢ ( 2o ∈ ω → 2o ≺ ω ) |
| 11 |
|
sdomdom |
⊢ ( 2o ≺ ω → 2o ≼ ω ) |
| 12 |
9 10 11
|
mp2b |
⊢ 2o ≼ ω |
| 13 |
|
simp2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ω ≼ 𝐴 ) |
| 14 |
|
domtr |
⊢ ( ( 2o ≼ ω ∧ ω ≼ 𝐴 ) → 2o ≼ 𝐴 ) |
| 15 |
12 13 14
|
sylancr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 2o ≼ 𝐴 ) |
| 16 |
|
xpdom1g |
⊢ ( ( 𝐴 ∈ dom card ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 17 |
8 15 16
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 18 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ∧ ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 19 |
7 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
| 20 |
|
infxpidm2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 21 |
20
|
3adant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 22 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) |
| 23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) |
| 24 |
2
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ V ) |
| 26 |
|
djudoml |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 27 |
8 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
| 28 |
|
sbth |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |
| 29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |