Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ≼ 𝐴 ) |
2 |
|
reldom |
⊢ Rel ≼ |
3 |
2
|
brrelex2i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
4 |
|
djudom2 |
⊢ ( ( 𝐵 ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
5 |
1 3 4
|
syl2anc2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
6 |
|
xp2dju |
⊢ ( 2o × 𝐴 ) = ( 𝐴 ⊔ 𝐴 ) |
7 |
5 6
|
breqtrrdi |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ) |
8 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ dom card ) |
9 |
|
2onn |
⊢ 2o ∈ ω |
10 |
|
nnsdom |
⊢ ( 2o ∈ ω → 2o ≺ ω ) |
11 |
|
sdomdom |
⊢ ( 2o ≺ ω → 2o ≼ ω ) |
12 |
9 10 11
|
mp2b |
⊢ 2o ≼ ω |
13 |
|
simp2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ω ≼ 𝐴 ) |
14 |
|
domtr |
⊢ ( ( 2o ≼ ω ∧ ω ≼ 𝐴 ) → 2o ≼ 𝐴 ) |
15 |
12 13 14
|
sylancr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 2o ≼ 𝐴 ) |
16 |
|
xpdom1g |
⊢ ( ( 𝐴 ∈ dom card ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
17 |
8 15 16
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
18 |
|
domtr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 2o × 𝐴 ) ∧ ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
19 |
7 17 18
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
20 |
|
infxpidm2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
21 |
20
|
3adant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
22 |
|
domentr |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) |
23 |
19 21 22
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ) |
24 |
2
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
25 |
24
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ V ) |
26 |
|
djudoml |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
27 |
8 25 26
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) |
28 |
|
sbth |
⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |