| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐵  ≼  𝐴 ) | 
						
							| 2 |  | reldom | ⊢ Rel   ≼ | 
						
							| 3 | 2 | brrelex2i | ⊢ ( 𝐵  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 4 |  | djudom2 | ⊢ ( ( 𝐵  ≼  𝐴  ∧  𝐴  ∈  V )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 5 | 1 3 4 | syl2anc2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( 𝐴  ⊔  𝐴 ) ) | 
						
							| 6 |  | xp2dju | ⊢ ( 2o  ×  𝐴 )  =  ( 𝐴  ⊔  𝐴 ) | 
						
							| 7 | 5 6 | breqtrrdi | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( 2o  ×  𝐴 ) ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 9 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 10 |  | nnsdom | ⊢ ( 2o  ∈  ω  →  2o  ≺  ω ) | 
						
							| 11 |  | sdomdom | ⊢ ( 2o  ≺  ω  →  2o  ≼  ω ) | 
						
							| 12 | 9 10 11 | mp2b | ⊢ 2o  ≼  ω | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ω  ≼  𝐴 ) | 
						
							| 14 |  | domtr | ⊢ ( ( 2o  ≼  ω  ∧  ω  ≼  𝐴 )  →  2o  ≼  𝐴 ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  2o  ≼  𝐴 ) | 
						
							| 16 |  | xpdom1g | ⊢ ( ( 𝐴  ∈  dom  card  ∧  2o  ≼  𝐴 )  →  ( 2o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 17 | 8 15 16 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 2o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 18 |  | domtr | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≼  ( 2o  ×  𝐴 )  ∧  ( 2o  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 19 | 7 17 18 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 20 |  | infxpidm2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝐴  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 22 |  | domentr | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≼  ( 𝐴  ×  𝐴 )  ∧  ( 𝐴  ×  𝐴 )  ≈  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≼  𝐴 ) | 
						
							| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≼  𝐴 ) | 
						
							| 24 | 2 | brrelex1i | ⊢ ( 𝐵  ≼  𝐴  →  𝐵  ∈  V ) | 
						
							| 25 | 24 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 26 |  | djudoml | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  ∈  V )  →  𝐴  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 27 | 8 25 26 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐴  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 28 |  | sbth | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≼  𝐴  ∧  𝐴  ≼  ( 𝐴  ⊔  𝐵 ) )  →  ( 𝐴  ⊔  𝐵 )  ≈  𝐴 ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≈  𝐴 ) |