Step |
Hyp |
Ref |
Expression |
1 |
|
df-inf |
⊢ inf ( ∅ , 𝐴 , 𝑅 ) = sup ( ∅ , 𝐴 , ◡ 𝑅 ) |
2 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
3 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑦 ) ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑋 ↔ 𝑋 𝑅 𝑦 ) ) |
5 |
4
|
bicomd |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑋 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑋 ) ) |
6 |
5
|
notbid |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑋 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
7 |
6
|
ralbidva |
⊢ ( 𝑋 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
8 |
7
|
pm5.32i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ↔ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ) |
9 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
10 |
9
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
11 |
10
|
bicomd |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ↔ 𝑦 ◡ 𝑅 𝑥 ) ) |
12 |
11
|
notbid |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 ◡ 𝑅 𝑥 ) ) |
13 |
12
|
ralbidva |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) ) |
14 |
13
|
reubiia |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) |
15 |
|
sup0 |
⊢ ( ( ◡ 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , ◡ 𝑅 ) = 𝑋 ) |
16 |
2 8 14 15
|
syl3anb |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) → sup ( ∅ , 𝐴 , ◡ 𝑅 ) = 𝑋 ) |
17 |
1 16
|
eqtrid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑋 𝑅 𝑦 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 𝑅 𝑦 ) → inf ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |