Step |
Hyp |
Ref |
Expression |
1 |
|
onprc |
⊢ ¬ On ∈ V |
2 |
|
eleq1 |
⊢ ( ω = On → ( ω ∈ V ↔ On ∈ V ) ) |
3 |
1 2
|
mtbiri |
⊢ ( ω = On → ¬ ω ∈ V ) |
4 |
|
ssexg |
⊢ ( ( ω ⊆ 𝐴 ∧ 𝐴 ∈ On ) → ω ∈ V ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ω ∈ V ) |
6 |
3 5
|
nsyl3 |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ¬ ω = On ) |
7 |
|
omon |
⊢ ( ω ∈ On ∨ ω = On ) |
8 |
7
|
ori |
⊢ ( ¬ ω ∈ On → ω = On ) |
9 |
6 8
|
nsyl2 |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ω ∈ On ) |
10 |
|
id |
⊢ ( 𝑥 = ω → 𝑥 = ω ) |
11 |
|
suceq |
⊢ ( 𝑥 = ω → suc 𝑥 = suc ω ) |
12 |
10 11
|
breq12d |
⊢ ( 𝑥 = ω → ( 𝑥 ≈ suc 𝑥 ↔ ω ≈ suc ω ) ) |
13 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
14 |
|
suceq |
⊢ ( 𝑥 = 𝑦 → suc 𝑥 = suc 𝑦 ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ suc 𝑥 ↔ 𝑦 ≈ suc 𝑦 ) ) |
16 |
|
id |
⊢ ( 𝑥 = suc 𝑦 → 𝑥 = suc 𝑦 ) |
17 |
|
suceq |
⊢ ( 𝑥 = suc 𝑦 → suc 𝑥 = suc suc 𝑦 ) |
18 |
16 17
|
breq12d |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ≈ suc 𝑥 ↔ suc 𝑦 ≈ suc suc 𝑦 ) ) |
19 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
20 |
|
suceq |
⊢ ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ suc 𝑥 ↔ 𝐴 ≈ suc 𝐴 ) ) |
22 |
|
limom |
⊢ Lim ω |
23 |
22
|
limensuci |
⊢ ( ω ∈ On → ω ≈ suc ω ) |
24 |
|
vex |
⊢ 𝑦 ∈ V |
25 |
24
|
sucex |
⊢ suc 𝑦 ∈ V |
26 |
|
en2sn |
⊢ ( ( 𝑦 ∈ V ∧ suc 𝑦 ∈ V ) → { 𝑦 } ≈ { suc 𝑦 } ) |
27 |
24 25 26
|
mp2an |
⊢ { 𝑦 } ≈ { suc 𝑦 } |
28 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
29 |
|
ordirr |
⊢ ( Ord 𝑦 → ¬ 𝑦 ∈ 𝑦 ) |
30 |
28 29
|
syl |
⊢ ( 𝑦 ∈ On → ¬ 𝑦 ∈ 𝑦 ) |
31 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ↔ ¬ 𝑦 ∈ 𝑦 ) |
32 |
30 31
|
sylibr |
⊢ ( 𝑦 ∈ On → ( 𝑦 ∩ { 𝑦 } ) = ∅ ) |
33 |
|
eloni |
⊢ ( suc 𝑦 ∈ On → Ord suc 𝑦 ) |
34 |
|
ordirr |
⊢ ( Ord suc 𝑦 → ¬ suc 𝑦 ∈ suc 𝑦 ) |
35 |
33 34
|
syl |
⊢ ( suc 𝑦 ∈ On → ¬ suc 𝑦 ∈ suc 𝑦 ) |
36 |
|
sucelon |
⊢ ( 𝑦 ∈ On ↔ suc 𝑦 ∈ On ) |
37 |
|
disjsn |
⊢ ( ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ↔ ¬ suc 𝑦 ∈ suc 𝑦 ) |
38 |
35 36 37
|
3imtr4i |
⊢ ( 𝑦 ∈ On → ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) |
39 |
32 38
|
jca |
⊢ ( 𝑦 ∈ On → ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) |
40 |
|
unen |
⊢ ( ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) → ( 𝑦 ∪ { 𝑦 } ) ≈ ( suc 𝑦 ∪ { suc 𝑦 } ) ) |
41 |
|
df-suc |
⊢ suc 𝑦 = ( 𝑦 ∪ { 𝑦 } ) |
42 |
|
df-suc |
⊢ suc suc 𝑦 = ( suc 𝑦 ∪ { suc 𝑦 } ) |
43 |
40 41 42
|
3brtr4g |
⊢ ( ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) ∧ ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) ) → suc 𝑦 ≈ suc suc 𝑦 ) |
44 |
43
|
ex |
⊢ ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) → ( ( ( 𝑦 ∩ { 𝑦 } ) = ∅ ∧ ( suc 𝑦 ∩ { suc 𝑦 } ) = ∅ ) → suc 𝑦 ≈ suc suc 𝑦 ) ) |
45 |
39 44
|
syl5 |
⊢ ( ( 𝑦 ≈ suc 𝑦 ∧ { 𝑦 } ≈ { suc 𝑦 } ) → ( 𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦 ) ) |
46 |
27 45
|
mpan2 |
⊢ ( 𝑦 ≈ suc 𝑦 → ( 𝑦 ∈ On → suc 𝑦 ≈ suc suc 𝑦 ) ) |
47 |
46
|
com12 |
⊢ ( 𝑦 ∈ On → ( 𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦 ) ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝑦 ∈ On ∧ ω ∈ On ) ∧ ω ⊆ 𝑦 ) → ( 𝑦 ≈ suc 𝑦 → suc 𝑦 ≈ suc suc 𝑦 ) ) |
49 |
|
vex |
⊢ 𝑥 ∈ V |
50 |
|
limensuc |
⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ≈ suc 𝑥 ) |
51 |
49 50
|
mpan |
⊢ ( Lim 𝑥 → 𝑥 ≈ suc 𝑥 ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( Lim 𝑥 ∧ ω ∈ On ) ∧ ω ⊆ 𝑥 ) → 𝑥 ≈ suc 𝑥 ) |
53 |
52
|
a1d |
⊢ ( ( ( Lim 𝑥 ∧ ω ∈ On ) ∧ ω ⊆ 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ω ⊆ 𝑦 → 𝑦 ≈ suc 𝑦 ) → 𝑥 ≈ suc 𝑥 ) ) |
54 |
12 15 18 21 23 48 53
|
tfindsg |
⊢ ( ( ( 𝐴 ∈ On ∧ ω ∈ On ) ∧ ω ⊆ 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |
55 |
54
|
exp31 |
⊢ ( 𝐴 ∈ On → ( ω ∈ On → ( ω ⊆ 𝐴 → 𝐴 ≈ suc 𝐴 ) ) ) |
56 |
55
|
com23 |
⊢ ( 𝐴 ∈ On → ( ω ⊆ 𝐴 → ( ω ∈ On → 𝐴 ≈ suc 𝐴 ) ) ) |
57 |
56
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → ( ω ∈ On → 𝐴 ≈ suc 𝐴 ) ) |
58 |
9 57
|
mpd |
⊢ ( ( 𝐴 ∈ On ∧ ω ⊆ 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |