Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| Assertion | infeq1d | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infeq1d.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 2 | infeq1 | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) |