Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | infeq1i.1 | ⊢ 𝐵 = 𝐶 | |
Assertion | infeq1i | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infeq1i.1 | ⊢ 𝐵 = 𝐶 | |
2 | infeq1 | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) | |
3 | 1 2 | ax-mp | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) |