Metamath Proof Explorer


Theorem infeq1i

Description: Equality inference for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infeq1i.1 𝐵 = 𝐶
Assertion infeq1i inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 )

Proof

Step Hyp Ref Expression
1 infeq1i.1 𝐵 = 𝐶
2 infeq1 ( 𝐵 = 𝐶 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) )
3 1 2 ax-mp inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 )