Metamath Proof Explorer


Theorem infeq5

Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex .) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion infeq5 ( ∃ 𝑥 𝑥 𝑥 ↔ ω ∈ V )

Proof

Step Hyp Ref Expression
1 df-pss ( 𝑥 𝑥 ↔ ( 𝑥 𝑥𝑥 𝑥 ) )
2 unieq ( 𝑥 = ∅ → 𝑥 = ∅ )
3 uni0 ∅ = ∅
4 2 3 eqtr2di ( 𝑥 = ∅ → ∅ = 𝑥 )
5 eqtr ( ( 𝑥 = ∅ ∧ ∅ = 𝑥 ) → 𝑥 = 𝑥 )
6 4 5 mpdan ( 𝑥 = ∅ → 𝑥 = 𝑥 )
7 6 necon3i ( 𝑥 𝑥𝑥 ≠ ∅ )
8 7 anim1i ( ( 𝑥 𝑥𝑥 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) )
9 8 ancoms ( ( 𝑥 𝑥𝑥 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) )
10 1 9 sylbi ( 𝑥 𝑥 → ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) )
11 10 eximi ( ∃ 𝑥 𝑥 𝑥 → ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) )
12 eqid ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } ) = ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } )
13 eqid ( rec ( ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ { 𝑤𝑥 ∣ ( 𝑤𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω )
14 vex 𝑥 ∈ V
15 12 13 14 14 inf3lem7 ( ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ω ∈ V )
16 15 exlimiv ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 𝑥 ) → ω ∈ V )
17 11 16 syl ( ∃ 𝑥 𝑥 𝑥 → ω ∈ V )
18 infeq5i ( ω ∈ V → ∃ 𝑥 𝑥 𝑥 )
19 17 18 impbii ( ∃ 𝑥 𝑥 𝑥 ↔ ω ∈ V )