| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difexg |
⊢ ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V ) |
| 2 |
|
0ex |
⊢ ∅ ∈ V |
| 3 |
2
|
snid |
⊢ ∅ ∈ { ∅ } |
| 4 |
|
disj4 |
⊢ ( ( ω ∩ { ∅ } ) = ∅ ↔ ¬ ( ω ∖ { ∅ } ) ⊊ ω ) |
| 5 |
|
disj3 |
⊢ ( ( ω ∩ { ∅ } ) = ∅ ↔ ω = ( ω ∖ { ∅ } ) ) |
| 6 |
4 5
|
bitr3i |
⊢ ( ¬ ( ω ∖ { ∅ } ) ⊊ ω ↔ ω = ( ω ∖ { ∅ } ) ) |
| 7 |
|
peano1 |
⊢ ∅ ∈ ω |
| 8 |
|
eleq2 |
⊢ ( ω = ( ω ∖ { ∅ } ) → ( ∅ ∈ ω ↔ ∅ ∈ ( ω ∖ { ∅ } ) ) ) |
| 9 |
7 8
|
mpbii |
⊢ ( ω = ( ω ∖ { ∅ } ) → ∅ ∈ ( ω ∖ { ∅ } ) ) |
| 10 |
9
|
eldifbd |
⊢ ( ω = ( ω ∖ { ∅ } ) → ¬ ∅ ∈ { ∅ } ) |
| 11 |
6 10
|
sylbi |
⊢ ( ¬ ( ω ∖ { ∅ } ) ⊊ ω → ¬ ∅ ∈ { ∅ } ) |
| 12 |
3 11
|
mt4 |
⊢ ( ω ∖ { ∅ } ) ⊊ ω |
| 13 |
|
unidif0 |
⊢ ∪ ( ω ∖ { ∅ } ) = ∪ ω |
| 14 |
|
limom |
⊢ Lim ω |
| 15 |
|
limuni |
⊢ ( Lim ω → ω = ∪ ω ) |
| 16 |
14 15
|
ax-mp |
⊢ ω = ∪ ω |
| 17 |
13 16
|
eqtr4i |
⊢ ∪ ( ω ∖ { ∅ } ) = ω |
| 18 |
17
|
psseq2i |
⊢ ( ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ↔ ( ω ∖ { ∅ } ) ⊊ ω ) |
| 19 |
12 18
|
mpbir |
⊢ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) |
| 20 |
|
psseq1 |
⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ 𝑥 ) ) |
| 21 |
|
unieq |
⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ∪ 𝑥 = ∪ ( ω ∖ { ∅ } ) ) |
| 22 |
21
|
psseq2d |
⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( ( ω ∖ { ∅ } ) ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ) ) |
| 23 |
20 22
|
bitrd |
⊢ ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 ⊊ ∪ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) ) ) |
| 24 |
23
|
spcegv |
⊢ ( ( ω ∖ { ∅ } ) ∈ V → ( ( ω ∖ { ∅ } ) ⊊ ∪ ( ω ∖ { ∅ } ) → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) ) |
| 25 |
1 19 24
|
mpisyl |
⊢ ( ω ∈ V → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) |