| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difexg | ⊢ ( ω  ∈  V  →  ( ω  ∖  { ∅ } )  ∈  V ) | 
						
							| 2 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 3 | 2 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 4 |  | disj4 | ⊢ ( ( ω  ∩  { ∅ } )  =  ∅  ↔  ¬  ( ω  ∖  { ∅ } )  ⊊  ω ) | 
						
							| 5 |  | disj3 | ⊢ ( ( ω  ∩  { ∅ } )  =  ∅  ↔  ω  =  ( ω  ∖  { ∅ } ) ) | 
						
							| 6 | 4 5 | bitr3i | ⊢ ( ¬  ( ω  ∖  { ∅ } )  ⊊  ω  ↔  ω  =  ( ω  ∖  { ∅ } ) ) | 
						
							| 7 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 8 |  | eleq2 | ⊢ ( ω  =  ( ω  ∖  { ∅ } )  →  ( ∅  ∈  ω  ↔  ∅  ∈  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 9 | 7 8 | mpbii | ⊢ ( ω  =  ( ω  ∖  { ∅ } )  →  ∅  ∈  ( ω  ∖  { ∅ } ) ) | 
						
							| 10 | 9 | eldifbd | ⊢ ( ω  =  ( ω  ∖  { ∅ } )  →  ¬  ∅  ∈  { ∅ } ) | 
						
							| 11 | 6 10 | sylbi | ⊢ ( ¬  ( ω  ∖  { ∅ } )  ⊊  ω  →  ¬  ∅  ∈  { ∅ } ) | 
						
							| 12 | 3 11 | mt4 | ⊢ ( ω  ∖  { ∅ } )  ⊊  ω | 
						
							| 13 |  | unidif0 | ⊢ ∪  ( ω  ∖  { ∅ } )  =  ∪  ω | 
						
							| 14 |  | limom | ⊢ Lim  ω | 
						
							| 15 |  | limuni | ⊢ ( Lim  ω  →  ω  =  ∪  ω ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ω  =  ∪  ω | 
						
							| 17 | 13 16 | eqtr4i | ⊢ ∪  ( ω  ∖  { ∅ } )  =  ω | 
						
							| 18 | 17 | psseq2i | ⊢ ( ( ω  ∖  { ∅ } )  ⊊  ∪  ( ω  ∖  { ∅ } )  ↔  ( ω  ∖  { ∅ } )  ⊊  ω ) | 
						
							| 19 | 12 18 | mpbir | ⊢ ( ω  ∖  { ∅ } )  ⊊  ∪  ( ω  ∖  { ∅ } ) | 
						
							| 20 |  | psseq1 | ⊢ ( 𝑥  =  ( ω  ∖  { ∅ } )  →  ( 𝑥  ⊊  ∪  𝑥  ↔  ( ω  ∖  { ∅ } )  ⊊  ∪  𝑥 ) ) | 
						
							| 21 |  | unieq | ⊢ ( 𝑥  =  ( ω  ∖  { ∅ } )  →  ∪  𝑥  =  ∪  ( ω  ∖  { ∅ } ) ) | 
						
							| 22 | 21 | psseq2d | ⊢ ( 𝑥  =  ( ω  ∖  { ∅ } )  →  ( ( ω  ∖  { ∅ } )  ⊊  ∪  𝑥  ↔  ( ω  ∖  { ∅ } )  ⊊  ∪  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 23 | 20 22 | bitrd | ⊢ ( 𝑥  =  ( ω  ∖  { ∅ } )  →  ( 𝑥  ⊊  ∪  𝑥  ↔  ( ω  ∖  { ∅ } )  ⊊  ∪  ( ω  ∖  { ∅ } ) ) ) | 
						
							| 24 | 23 | spcegv | ⊢ ( ( ω  ∖  { ∅ } )  ∈  V  →  ( ( ω  ∖  { ∅ } )  ⊊  ∪  ( ω  ∖  { ∅ } )  →  ∃ 𝑥 𝑥  ⊊  ∪  𝑥 ) ) | 
						
							| 25 | 1 19 24 | mpisyl | ⊢ ( ω  ∈  V  →  ∃ 𝑥 𝑥  ⊊  ∪  𝑥 ) |