Metamath Proof Explorer


Theorem infeq5i

Description: Half of infeq5 . (Contributed by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion infeq5i ( ω ∈ V → ∃ 𝑥 𝑥 𝑥 )

Proof

Step Hyp Ref Expression
1 difexg ( ω ∈ V → ( ω ∖ { ∅ } ) ∈ V )
2 0ex ∅ ∈ V
3 2 snid ∅ ∈ { ∅ }
4 disj4 ( ( ω ∩ { ∅ } ) = ∅ ↔ ¬ ( ω ∖ { ∅ } ) ⊊ ω )
5 disj3 ( ( ω ∩ { ∅ } ) = ∅ ↔ ω = ( ω ∖ { ∅ } ) )
6 4 5 bitr3i ( ¬ ( ω ∖ { ∅ } ) ⊊ ω ↔ ω = ( ω ∖ { ∅ } ) )
7 peano1 ∅ ∈ ω
8 eleq2 ( ω = ( ω ∖ { ∅ } ) → ( ∅ ∈ ω ↔ ∅ ∈ ( ω ∖ { ∅ } ) ) )
9 7 8 mpbii ( ω = ( ω ∖ { ∅ } ) → ∅ ∈ ( ω ∖ { ∅ } ) )
10 9 eldifbd ( ω = ( ω ∖ { ∅ } ) → ¬ ∅ ∈ { ∅ } )
11 6 10 sylbi ( ¬ ( ω ∖ { ∅ } ) ⊊ ω → ¬ ∅ ∈ { ∅ } )
12 3 11 mt4 ( ω ∖ { ∅ } ) ⊊ ω
13 unidif0 ( ω ∖ { ∅ } ) = ω
14 limom Lim ω
15 limuni ( Lim ω → ω = ω )
16 14 15 ax-mp ω = ω
17 13 16 eqtr4i ( ω ∖ { ∅ } ) = ω
18 17 psseq2i ( ( ω ∖ { ∅ } ) ⊊ ( ω ∖ { ∅ } ) ↔ ( ω ∖ { ∅ } ) ⊊ ω )
19 12 18 mpbir ( ω ∖ { ∅ } ) ⊊ ( ω ∖ { ∅ } )
20 psseq1 ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ 𝑥 ) )
21 unieq ( 𝑥 = ( ω ∖ { ∅ } ) → 𝑥 = ( ω ∖ { ∅ } ) )
22 21 psseq2d ( 𝑥 = ( ω ∖ { ∅ } ) → ( ( ω ∖ { ∅ } ) ⊊ 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ( ω ∖ { ∅ } ) ) )
23 20 22 bitrd ( 𝑥 = ( ω ∖ { ∅ } ) → ( 𝑥 𝑥 ↔ ( ω ∖ { ∅ } ) ⊊ ( ω ∖ { ∅ } ) ) )
24 23 spcegv ( ( ω ∖ { ∅ } ) ∈ V → ( ( ω ∖ { ∅ } ) ⊊ ( ω ∖ { ∅ } ) → ∃ 𝑥 𝑥 𝑥 ) )
25 1 19 24 mpisyl ( ω ∈ V → ∃ 𝑥 𝑥 𝑥 )