Metamath Proof Explorer


Theorem infexd

Description: An infimum is a set. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 ( 𝜑𝑅 Or 𝐴 )
Assertion infexd ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )

Proof

Step Hyp Ref Expression
1 infexd.1 ( 𝜑𝑅 Or 𝐴 )
2 df-inf inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 )
3 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
4 1 3 sylib ( 𝜑 𝑅 Or 𝐴 )
5 4 supexd ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )
6 2 5 eqeltrid ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V )