Description: An infimum is a set. (Contributed by AV, 2-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| Assertion | infexd | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 2 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
| 3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
| 4 | 1 3 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 5 | 4 | supexd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ V ) |
| 6 | 2 5 | eqeltrid | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) |