Description: An infimum is a set. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
Assertion | infexd | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infexd.1 | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
2 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
3 | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) | |
4 | 1 3 | sylib | ⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
5 | 4 | supexd | ⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ V ) |
6 | 2 5 | eqeltrid | ⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ V ) |