| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infpwfien | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ≈  𝐴 ) | 
						
							| 2 |  | relen | ⊢ Rel   ≈ | 
						
							| 3 | 2 | brrelex1i | ⊢ ( ( 𝒫  𝐴  ∩  Fin )  ≈  𝐴  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 4 | 1 3 | syl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 5 |  | difss | ⊢ ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ⊆  ( 𝒫  𝐴  ∩  Fin ) | 
						
							| 6 |  | ssdomg | ⊢ ( ( 𝒫  𝐴  ∩  Fin )  ∈  V  →  ( ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ⊆  ( 𝒫  𝐴  ∩  Fin )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 7 | 4 5 6 | mpisyl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 8 |  | domentr | ⊢ ( ( ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  ( 𝒫  𝐴  ∩  Fin )  ∧  ( 𝒫  𝐴  ∩  Fin )  ≈  𝐴 )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  𝐴 ) | 
						
							| 9 | 7 1 8 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  𝐴 ) | 
						
							| 10 |  | numdom | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  𝐴 )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ∈  dom  card ) | 
						
							| 11 | 9 10 | syldan | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ∈  dom  card ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑥  ∈  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ↦  ∩  𝑥 )  =  ( 𝑥  ∈  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ↦  ∩  𝑥 ) | 
						
							| 13 | 12 | fifo | ⊢ ( 𝐴  ∈  dom  card  →  ( 𝑥  ∈  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ↦  ∩  𝑥 ) : ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑥  ∈  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ↦  ∩  𝑥 ) : ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) | 
						
							| 15 |  | fodomnum | ⊢ ( ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ∈  dom  card  →  ( ( 𝑥  ∈  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ↦  ∩  𝑥 ) : ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } ) –onto→ ( fi ‘ 𝐴 )  →  ( fi ‘ 𝐴 )  ≼  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } ) ) ) | 
						
							| 16 | 11 14 15 | sylc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( fi ‘ 𝐴 )  ≼  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } ) ) | 
						
							| 17 |  | domtr | ⊢ ( ( ( fi ‘ 𝐴 )  ≼  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ∧  ( ( 𝒫  𝐴  ∩  Fin )  ∖  { ∅ } )  ≼  𝐴 )  →  ( fi ‘ 𝐴 )  ≼  𝐴 ) | 
						
							| 18 | 16 9 17 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( fi ‘ 𝐴 )  ≼  𝐴 ) | 
						
							| 19 |  | fvex | ⊢ ( fi ‘ 𝐴 )  ∈  V | 
						
							| 20 |  | ssfii | ⊢ ( 𝐴  ∈  dom  card  →  𝐴  ⊆  ( fi ‘ 𝐴 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  𝐴  ⊆  ( fi ‘ 𝐴 ) ) | 
						
							| 22 |  | ssdomg | ⊢ ( ( fi ‘ 𝐴 )  ∈  V  →  ( 𝐴  ⊆  ( fi ‘ 𝐴 )  →  𝐴  ≼  ( fi ‘ 𝐴 ) ) ) | 
						
							| 23 | 19 21 22 | mpsyl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  𝐴  ≼  ( fi ‘ 𝐴 ) ) | 
						
							| 24 |  | sbth | ⊢ ( ( ( fi ‘ 𝐴 )  ≼  𝐴  ∧  𝐴  ≼  ( fi ‘ 𝐴 ) )  →  ( fi ‘ 𝐴 )  ≈  𝐴 ) | 
						
							| 25 | 18 23 24 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( fi ‘ 𝐴 )  ≈  𝐴 ) |