Step |
Hyp |
Ref |
Expression |
1 |
|
infpwfien |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) |
2 |
|
relen |
⊢ Rel ≈ |
3 |
2
|
brrelex1i |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
4 |
1 3
|
syl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝒫 𝐴 ∩ Fin ) ∈ V ) |
5 |
|
difss |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) |
6 |
|
ssdomg |
⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ⊆ ( 𝒫 𝐴 ∩ Fin ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) ) |
7 |
4 5 6
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
8 |
|
domentr |
⊢ ( ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ ( 𝒫 𝐴 ∩ Fin ) ∧ ( 𝒫 𝐴 ∩ Fin ) ≈ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) |
9 |
7 1 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) |
10 |
|
numdom |
⊢ ( ( 𝐴 ∈ dom card ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card ) |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) = ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) |
13 |
12
|
fifo |
⊢ ( 𝐴 ∈ dom card → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) ) |
15 |
|
fodomnum |
⊢ ( ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∈ dom card → ( ( 𝑥 ∈ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ↦ ∩ 𝑥 ) : ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) –onto→ ( fi ‘ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) ) |
16 |
11 14 15
|
sylc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ) |
17 |
|
domtr |
⊢ ( ( ( fi ‘ 𝐴 ) ≼ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ∧ ( ( 𝒫 𝐴 ∩ Fin ) ∖ { ∅ } ) ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) |
18 |
16 9 17
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≼ 𝐴 ) |
19 |
|
fvex |
⊢ ( fi ‘ 𝐴 ) ∈ V |
20 |
|
ssfii |
⊢ ( 𝐴 ∈ dom card → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
22 |
|
ssdomg |
⊢ ( ( fi ‘ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) ) |
23 |
19 21 22
|
mpsyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → 𝐴 ≼ ( fi ‘ 𝐴 ) ) |
24 |
|
sbth |
⊢ ( ( ( fi ‘ 𝐴 ) ≼ 𝐴 ∧ 𝐴 ≼ ( fi ‘ 𝐴 ) ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |
25 |
18 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( fi ‘ 𝐴 ) ≈ 𝐴 ) |