Step |
Hyp |
Ref |
Expression |
1 |
|
ssfii |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( fi ‘ 𝐴 ) ) |
2 |
|
eqimss2 |
⊢ ( 𝑧 = 𝐴 → 𝐴 ⊆ 𝑧 ) |
3 |
2
|
biantrurd |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ) ) |
4 |
|
eleq2 |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
5 |
4
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
6 |
5
|
raleqbi1dv |
⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
7 |
3 6
|
bitr3d |
⊢ ( 𝑧 = 𝐴 → ( ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
8 |
7
|
elabg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
9 |
|
intss1 |
⊢ ( 𝐴 ∈ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) |
10 |
8 9
|
syl6bir |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) ) |
11 |
|
dffi2 |
⊢ ( 𝐴 ∈ 𝑉 → ( fi ‘ 𝐴 ) = ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ) |
12 |
11
|
sseq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( fi ‘ 𝐴 ) ⊆ 𝐴 ↔ ∩ { 𝑧 ∣ ( 𝐴 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ∀ 𝑦 ∈ 𝑧 ( 𝑥 ∩ 𝑦 ) ∈ 𝑧 ) } ⊆ 𝐴 ) ) |
13 |
10 12
|
sylibrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ( fi ‘ 𝐴 ) ⊆ 𝐴 ) ) |
14 |
|
eqss |
⊢ ( ( fi ‘ 𝐴 ) = 𝐴 ↔ ( ( fi ‘ 𝐴 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( fi ‘ 𝐴 ) ) ) |
15 |
14
|
simplbi2com |
⊢ ( 𝐴 ⊆ ( fi ‘ 𝐴 ) → ( ( fi ‘ 𝐴 ) ⊆ 𝐴 → ( fi ‘ 𝐴 ) = 𝐴 ) ) |
16 |
1 13 15
|
sylsyld |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 → ( fi ‘ 𝐴 ) = 𝐴 ) ) |
17 |
|
fiin |
⊢ ( ( 𝑥 ∈ ( fi ‘ 𝐴 ) ∧ 𝑦 ∈ ( fi ‘ 𝐴 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ) |
18 |
17
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) |
19 |
|
eleq2 |
⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
20 |
19
|
raleqbi1dv |
⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
21 |
20
|
raleqbi1dv |
⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ( ∀ 𝑥 ∈ ( fi ‘ 𝐴 ) ∀ 𝑦 ∈ ( fi ‘ 𝐴 ) ( 𝑥 ∩ 𝑦 ) ∈ ( fi ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) ) |
22 |
18 21
|
mpbii |
⊢ ( ( fi ‘ 𝐴 ) = 𝐴 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ) |
23 |
16 22
|
impbid1 |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |