| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inss1 | ⊢ ( 𝐹  ∩  𝐺 )  ⊆  𝐹 | 
						
							| 2 |  | filsspw | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝐹  ⊆  𝒫  𝑋 ) | 
						
							| 4 | 1 3 | sstrid | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐹  ∩  𝐺 )  ⊆  𝒫  𝑋 ) | 
						
							| 5 |  | 0nelfil | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ¬  ∅  ∈  𝐹 ) | 
						
							| 7 |  | elinel1 | ⊢ ( ∅  ∈  ( 𝐹  ∩  𝐺 )  →  ∅  ∈  𝐹 ) | 
						
							| 8 | 6 7 | nsyl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ¬  ∅  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 9 |  | filtop | ⊢ ( 𝐹  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐹 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝑋  ∈  𝐹 ) | 
						
							| 11 |  | filtop | ⊢ ( 𝐺  ∈  ( Fil ‘ 𝑋 )  →  𝑋  ∈  𝐺 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝑋  ∈  𝐺 ) | 
						
							| 13 | 10 12 | elind | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝑋  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 14 | 4 8 13 | 3jca | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( ( 𝐹  ∩  𝐺 )  ⊆  𝒫  𝑋  ∧  ¬  ∅  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑋  ∈  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 16 |  | simpr2 | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑦  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 17 |  | elinel1 | ⊢ ( 𝑦  ∈  ( 𝐹  ∩  𝐺 )  →  𝑦  ∈  𝐹 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑦  ∈  𝐹 ) | 
						
							| 19 |  | simpr1 | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  𝒫  𝑋 ) | 
						
							| 20 | 19 | elpwid | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ⊆  𝑋 ) | 
						
							| 21 |  | simpr3 | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑦  ⊆  𝑥 ) | 
						
							| 22 |  | filss | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝐹  ∧  𝑥  ⊆  𝑋  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  𝐹 ) | 
						
							| 23 | 15 18 20 21 22 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  𝐹 ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 25 |  | elinel2 | ⊢ ( 𝑦  ∈  ( 𝐹  ∩  𝐺 )  →  𝑦  ∈  𝐺 ) | 
						
							| 26 | 16 25 | syl | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑦  ∈  𝐺 ) | 
						
							| 27 |  | filss | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝐺  ∧  𝑥  ⊆  𝑋  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  𝐺 ) | 
						
							| 28 | 24 26 20 21 27 | syl13anc | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  𝐺 ) | 
						
							| 29 | 23 28 | elind | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  𝒫  𝑋  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ⊆  𝑥 ) )  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 30 | 29 | 3exp2 | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑥  ∈  𝒫  𝑋  →  ( 𝑦  ∈  ( 𝐹  ∩  𝐺 )  →  ( 𝑦  ⊆  𝑥  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) ) ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝒫  𝑋 )  →  ( 𝑦  ∈  ( 𝐹  ∩  𝐺 )  →  ( 𝑦  ⊆  𝑥  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) ) ) ) | 
						
							| 32 | 31 | rexlimdv | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  𝑥  ∈  𝒫  𝑋 )  →  ( ∃ 𝑦  ∈  ( 𝐹  ∩  𝐺 ) 𝑦  ⊆  𝑥  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ∀ 𝑥  ∈  𝒫  𝑋 ( ∃ 𝑦  ∈  ( 𝐹  ∩  𝐺 ) 𝑦  ⊆  𝑥  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 34 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝐹  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 35 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  →  𝑥  ∈  𝐹 ) | 
						
							| 36 | 35 17 | anim12i | ⊢ ( ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 ) )  →  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) ) | 
						
							| 37 |  | filin | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 38 | 37 | 3expb | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝐹  ∧  𝑦  ∈  𝐹 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 39 | 34 36 38 | syl2an | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 ) ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐹 ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  𝐺  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 41 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  →  𝑥  ∈  𝐺 ) | 
						
							| 42 | 41 25 | anim12i | ⊢ ( ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 ) )  →  ( 𝑥  ∈  𝐺  ∧  𝑦  ∈  𝐺 ) ) | 
						
							| 43 |  | filin | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  𝑥  ∈  𝐺  ∧  𝑦  ∈  𝐺 )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐺 ) | 
						
							| 44 | 43 | 3expb | ⊢ ( ( 𝐺  ∈  ( Fil ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝐺  ∧  𝑦  ∈  𝐺 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐺 ) | 
						
							| 45 | 40 42 44 | syl2an | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 ) ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐺 ) | 
						
							| 46 | 39 45 | elind | ⊢ ( ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  ∧  ( 𝑥  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑦  ∈  ( 𝐹  ∩  𝐺 ) ) )  →  ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 47 | 46 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ∀ 𝑥  ∈  ( 𝐹  ∩  𝐺 ) ∀ 𝑦  ∈  ( 𝐹  ∩  𝐺 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∩  𝐺 ) ) | 
						
							| 48 |  | isfil2 | ⊢ ( ( 𝐹  ∩  𝐺 )  ∈  ( Fil ‘ 𝑋 )  ↔  ( ( ( 𝐹  ∩  𝐺 )  ⊆  𝒫  𝑋  ∧  ¬  ∅  ∈  ( 𝐹  ∩  𝐺 )  ∧  𝑋  ∈  ( 𝐹  ∩  𝐺 ) )  ∧  ∀ 𝑥  ∈  𝒫  𝑋 ( ∃ 𝑦  ∈  ( 𝐹  ∩  𝐺 ) 𝑦  ⊆  𝑥  →  𝑥  ∈  ( 𝐹  ∩  𝐺 ) )  ∧  ∀ 𝑥  ∈  ( 𝐹  ∩  𝐺 ) ∀ 𝑦  ∈  ( 𝐹  ∩  𝐺 ) ( 𝑥  ∩  𝑦 )  ∈  ( 𝐹  ∩  𝐺 ) ) ) | 
						
							| 49 | 14 33 47 48 | syl3anbrc | ⊢ ( ( 𝐹  ∈  ( Fil ‘ 𝑋 )  ∧  𝐺  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝐹  ∩  𝐺 )  ∈  ( Fil ‘ 𝑋 ) ) |