Metamath Proof Explorer


Theorem infinf

Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion infinf ( 𝐴𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 isfinite ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω )
2 1 notbii ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω )
3 omex ω ∈ V
4 domtri ( ( ω ∈ V ∧ 𝐴𝐵 ) → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) )
5 3 4 mpan ( 𝐴𝐵 → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) )
6 2 5 bitr4id ( 𝐴𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴 ) )