Description: Equivalence between two infiniteness criteria for sets. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | infinf | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfinite | ⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) | |
2 | 1 | notbii | ⊢ ( ¬ 𝐴 ∈ Fin ↔ ¬ 𝐴 ≺ ω ) |
3 | omex | ⊢ ω ∈ V | |
4 | domtri | ⊢ ( ( ω ∈ V ∧ 𝐴 ∈ 𝐵 ) → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) | |
5 | 3 4 | mpan | ⊢ ( 𝐴 ∈ 𝐵 → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) |
6 | 2 5 | bitr4id | ⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ Fin ↔ ω ≼ 𝐴 ) ) |