| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infiso.1 | ⊢ ( 𝜑  →  𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 2 |  | infiso.2 | ⊢ ( 𝜑  →  𝐶  ⊆  𝐴 ) | 
						
							| 3 |  | infiso.3 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐶 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐶 𝑧 𝑅 𝑦 ) ) ) | 
						
							| 4 |  | infiso.4 | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 5 |  | isocnv2 | ⊢ ( 𝐹  Isom  𝑅 ,  𝑆 ( 𝐴 ,  𝐵 )  ↔  𝐹  Isom  ◡ 𝑅 ,  ◡ 𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 6 | 1 5 | sylib | ⊢ ( 𝜑  →  𝐹  Isom  ◡ 𝑅 ,  ◡ 𝑆 ( 𝐴 ,  𝐵 ) ) | 
						
							| 7 | 4 3 | infcllem | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐶 ¬  𝑥 ◡ 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐶 𝑦 ◡ 𝑅 𝑧 ) ) ) | 
						
							| 8 |  | cnvso | ⊢ ( 𝑅  Or  𝐴  ↔  ◡ 𝑅  Or  𝐴 ) | 
						
							| 9 | 4 8 | sylib | ⊢ ( 𝜑  →  ◡ 𝑅  Or  𝐴 ) | 
						
							| 10 | 6 2 7 9 | supiso | ⊢ ( 𝜑  →  sup ( ( 𝐹  “  𝐶 ) ,  𝐵 ,  ◡ 𝑆 )  =  ( 𝐹 ‘ sup ( 𝐶 ,  𝐴 ,  ◡ 𝑅 ) ) ) | 
						
							| 11 |  | df-inf | ⊢ inf ( ( 𝐹  “  𝐶 ) ,  𝐵 ,  𝑆 )  =  sup ( ( 𝐹  “  𝐶 ) ,  𝐵 ,  ◡ 𝑆 ) | 
						
							| 12 |  | df-inf | ⊢ inf ( 𝐶 ,  𝐴 ,  𝑅 )  =  sup ( 𝐶 ,  𝐴 ,  ◡ 𝑅 ) | 
						
							| 13 | 12 | fveq2i | ⊢ ( 𝐹 ‘ inf ( 𝐶 ,  𝐴 ,  𝑅 ) )  =  ( 𝐹 ‘ sup ( 𝐶 ,  𝐴 ,  ◡ 𝑅 ) ) | 
						
							| 14 | 10 11 13 | 3eqtr4g | ⊢ ( 𝜑  →  inf ( ( 𝐹  “  𝐶 ) ,  𝐵 ,  𝑆 )  =  ( 𝐹 ‘ inf ( 𝐶 ,  𝐴 ,  𝑅 ) ) ) |