| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infltoreq.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 2 |
|
infltoreq.2 |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 3 |
|
infltoreq.3 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 4 |
|
infltoreq.4 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 5 |
|
infltoreq.5 |
⊢ ( 𝜑 → 𝑆 = inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 6 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
| 7 |
1 6
|
sylib |
⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
| 8 |
|
df-inf |
⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) |
| 9 |
5 8
|
eqtrdi |
⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) |
| 10 |
7 2 3 4 9
|
supgtoreq |
⊢ ( 𝜑 → ( 𝐶 ◡ 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 11 |
4
|
ne0d |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 12 |
|
fiinfcl |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴 ) ) → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
| 13 |
1 3 11 2 12
|
syl13anc |
⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐵 ) |
| 14 |
5 13
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
| 15 |
|
brcnvg |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ) → ( 𝐶 ◡ 𝑅 𝑆 ↔ 𝑆 𝑅 𝐶 ) ) |
| 16 |
15
|
bicomd |
⊢ ( ( 𝐶 ∈ 𝐵 ∧ 𝑆 ∈ 𝐵 ) → ( 𝑆 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑆 ) ) |
| 17 |
4 14 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ↔ 𝐶 ◡ 𝑅 𝑆 ) ) |
| 18 |
17
|
orbi1d |
⊢ ( 𝜑 → ( ( 𝑆 𝑅 𝐶 ∨ 𝐶 = 𝑆 ) ↔ ( 𝐶 ◡ 𝑅 𝑆 ∨ 𝐶 = 𝑆 ) ) ) |
| 19 |
10 18
|
mpbird |
⊢ ( 𝜑 → ( 𝑆 𝑅 𝐶 ∨ 𝐶 = 𝑆 ) ) |