Metamath Proof Explorer


Theorem infmap

Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. (Contributed by NM, 1-Oct-2004) (Proof shortened by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infmap ( ( ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )

Proof

Step Hyp Ref Expression
1 ovex ( 𝐴m 𝐵 ) ∈ V
2 numth3 ( ( 𝐴m 𝐵 ) ∈ V → ( 𝐴m 𝐵 ) ∈ dom card )
3 1 2 ax-mp ( 𝐴m 𝐵 ) ∈ dom card
4 infmap2 ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
5 3 4 mp3an3 ( ( ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )