Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ↑m 𝐵 ) = ( 𝐴 ↑m ∅ ) ) |
2 |
|
breq2 |
⊢ ( 𝐵 = ∅ → ( 𝑥 ≈ 𝐵 ↔ 𝑥 ≈ ∅ ) ) |
3 |
2
|
anbi2d |
⊢ ( 𝐵 = ∅ → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ) ) |
4 |
3
|
abbidv |
⊢ ( 𝐵 = ∅ → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) |
5 |
1 4
|
breq12d |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ↔ ( 𝐴 ↑m ∅ ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) ) |
6 |
|
simpl2 |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≼ 𝐴 ) |
7 |
|
reldom |
⊢ Rel ≼ |
8 |
7
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
9 |
6 8
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ V ) |
10 |
7
|
brrelex2i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
11 |
6 10
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ V ) |
12 |
|
xpcomeng |
⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ) |
14 |
|
simpl3 |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ∈ dom card ) |
15 |
|
simpr |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ ) |
16 |
|
mapdom3 |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
17 |
11 9 15 16
|
syl3anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) |
18 |
|
numdom |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ∈ dom card ∧ 𝐴 ≼ ( 𝐴 ↑m 𝐵 ) ) → 𝐴 ∈ dom card ) |
19 |
14 17 18
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ dom card ) |
20 |
|
simpl1 |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ω ≼ 𝐴 ) |
21 |
|
infxpabs |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |
22 |
19 20 15 6 21
|
syl22anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |
23 |
|
entr |
⊢ ( ( ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ≈ 𝐴 ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 ) |
24 |
13 22 23
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 ) |
25 |
|
ssenen |
⊢ ( ( 𝐵 × 𝐴 ) ≈ 𝐴 → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
26 |
24 25
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
27 |
|
relen |
⊢ Rel ≈ |
28 |
27
|
brrelex1i |
⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V ) |
29 |
26 28
|
syl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V ) |
30 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) } = ( 𝐴 ↑m 𝐵 ) |
31 |
|
elmapi |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) → 𝑥 : 𝐵 ⟶ 𝐴 ) |
32 |
|
fssxp |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ⊆ ( 𝐵 × 𝐴 ) ) |
33 |
|
ffun |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → Fun 𝑥 ) |
34 |
|
vex |
⊢ 𝑥 ∈ V |
35 |
34
|
fundmen |
⊢ ( Fun 𝑥 → dom 𝑥 ≈ 𝑥 ) |
36 |
|
ensym |
⊢ ( dom 𝑥 ≈ 𝑥 → 𝑥 ≈ dom 𝑥 ) |
37 |
33 35 36
|
3syl |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ≈ dom 𝑥 ) |
38 |
|
fdm |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → dom 𝑥 = 𝐵 ) |
39 |
37 38
|
breqtrd |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → 𝑥 ≈ 𝐵 ) |
40 |
32 39
|
jca |
⊢ ( 𝑥 : 𝐵 ⟶ 𝐴 → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) ) |
41 |
31 40
|
syl |
⊢ ( 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) ) |
42 |
41
|
ss2abi |
⊢ { 𝑥 ∣ 𝑥 ∈ ( 𝐴 ↑m 𝐵 ) } ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } |
43 |
30 42
|
eqsstrri |
⊢ ( 𝐴 ↑m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } |
44 |
|
ssdomg |
⊢ ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∈ V → ( ( 𝐴 ↑m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ) ) |
45 |
29 43 44
|
mpisyl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ) |
46 |
|
domentr |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥 ≈ 𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
47 |
45 26 46
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
48 |
|
ovex |
⊢ ( 𝐴 ↑m 𝐵 ) ∈ V |
49 |
48
|
mptex |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V |
50 |
49
|
rnex |
⊢ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V |
51 |
|
ensym |
⊢ ( 𝑥 ≈ 𝐵 → 𝐵 ≈ 𝑥 ) |
52 |
51
|
ad2antll |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ≈ 𝑥 ) |
53 |
|
bren |
⊢ ( 𝐵 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) |
54 |
52 53
|
sylib |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) |
55 |
|
f1of |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → 𝑓 : 𝐵 ⟶ 𝑥 ) |
56 |
55
|
adantl |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 : 𝐵 ⟶ 𝑥 ) |
57 |
|
simplrl |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑥 ⊆ 𝐴 ) |
58 |
56 57
|
fssd |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 : 𝐵 ⟶ 𝐴 ) |
59 |
11 9
|
elmapd |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
60 |
59
|
ad2antrr |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↔ 𝑓 : 𝐵 ⟶ 𝐴 ) ) |
61 |
58 60
|
mpbird |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ) |
62 |
|
f1ofo |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → 𝑓 : 𝐵 –onto→ 𝑥 ) |
63 |
|
forn |
⊢ ( 𝑓 : 𝐵 –onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
64 |
62 63
|
syl |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
65 |
64
|
adantl |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ran 𝑓 = 𝑥 ) |
66 |
65
|
eqcomd |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → 𝑥 = ran 𝑓 ) |
67 |
61 66
|
jca |
⊢ ( ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) ∧ 𝑓 : 𝐵 –1-1-onto→ 𝑥 ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) |
68 |
67
|
ex |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) ) |
69 |
68
|
eximdv |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝑥 → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) ) |
70 |
54 69
|
mpd |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) |
71 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) |
72 |
70 71
|
sylibr |
⊢ ( ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) ) → ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ) |
73 |
72
|
ex |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) → ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 ) ) |
74 |
73
|
ss2abdv |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 } ) |
75 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) = ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) |
76 |
75
|
rnmpt |
⊢ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) = { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) 𝑥 = ran 𝑓 } |
77 |
74 76
|
sseqtrrdi |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
78 |
|
ssdomg |
⊢ ( ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∈ V → ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) ) |
79 |
50 77 78
|
mpsyl |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
80 |
|
vex |
⊢ 𝑓 ∈ V |
81 |
80
|
rnex |
⊢ ran 𝑓 ∈ V |
82 |
81
|
rgenw |
⊢ ∀ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ran 𝑓 ∈ V |
83 |
75
|
fnmpt |
⊢ ( ∀ 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ran 𝑓 ∈ V → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ) |
84 |
82 83
|
mp1i |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ) |
85 |
|
dffn4 |
⊢ ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴 ↑m 𝐵 ) ↔ ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
86 |
84 85
|
sylib |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ) |
87 |
|
fodomnum |
⊢ ( ( 𝐴 ↑m 𝐵 ) ∈ dom card → ( ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴 ↑m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) → ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) ) |
88 |
14 86 87
|
sylc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) |
89 |
|
domtr |
⊢ ( ( { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ∧ ran ( 𝑓 ∈ ( 𝐴 ↑m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴 ↑m 𝐵 ) ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) |
90 |
79 88 89
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) |
91 |
|
sbth |
⊢ ( ( ( 𝐴 ↑m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ≼ ( 𝐴 ↑m 𝐵 ) ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
92 |
47 90 91
|
syl2anc |
⊢ ( ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |
93 |
7
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → 𝐴 ∈ V ) |
95 |
|
map0e |
⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m ∅ ) = 1o ) |
96 |
94 95
|
syl |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m ∅ ) = 1o ) |
97 |
|
1oex |
⊢ 1o ∈ V |
98 |
97
|
enref |
⊢ 1o ≈ 1o |
99 |
|
df-sn |
⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } |
100 |
|
df1o2 |
⊢ 1o = { ∅ } |
101 |
|
en0 |
⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) |
102 |
101
|
anbi2i |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅ ) ) |
103 |
|
0ss |
⊢ ∅ ⊆ 𝐴 |
104 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
105 |
103 104
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝑥 ⊆ 𝐴 ) |
106 |
105
|
pm4.71ri |
⊢ ( 𝑥 = ∅ ↔ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅ ) ) |
107 |
102 106
|
bitr4i |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) ↔ 𝑥 = ∅ ) |
108 |
107
|
abbii |
⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } = { 𝑥 ∣ 𝑥 = ∅ } |
109 |
99 100 108
|
3eqtr4ri |
⊢ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } = 1o |
110 |
98 109
|
breqtrri |
⊢ 1o ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } |
111 |
96 110
|
eqbrtrdi |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m ∅ ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ∅ ) } ) |
112 |
5 92 111
|
pm2.61ne |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ ( 𝐴 ↑m 𝐵 ) ∈ dom card ) → ( 𝐴 ↑m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵 ) } ) |