Metamath Proof Explorer


Theorem infmap2

Description: An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of Jech p. 43. Although this version of infmap avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infmap2 ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝐵 = ∅ → ( 𝐴m 𝐵 ) = ( 𝐴m ∅ ) )
2 breq2 ( 𝐵 = ∅ → ( 𝑥𝐵𝑥 ≈ ∅ ) )
3 2 anbi2d ( 𝐵 = ∅ → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( 𝑥𝐴𝑥 ≈ ∅ ) ) )
4 3 abbidv ( 𝐵 = ∅ → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } = { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) } )
5 1 4 breq12d ( 𝐵 = ∅ → ( ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ↔ ( 𝐴m ∅ ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) } ) )
6 simpl2 ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵𝐴 )
7 reldom Rel ≼
8 7 brrelex1i ( 𝐵𝐴𝐵 ∈ V )
9 6 8 syl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ∈ V )
10 7 brrelex2i ( 𝐵𝐴𝐴 ∈ V )
11 6 10 syl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ V )
12 xpcomeng ( ( 𝐵 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) )
13 9 11 12 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) )
14 simpl3 ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴m 𝐵 ) ∈ dom card )
15 simpr ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐵 ≠ ∅ )
16 mapdom3 ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴m 𝐵 ) )
17 11 9 15 16 syl3anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴m 𝐵 ) )
18 numdom ( ( ( 𝐴m 𝐵 ) ∈ dom card ∧ 𝐴 ≼ ( 𝐴m 𝐵 ) ) → 𝐴 ∈ dom card )
19 14 17 18 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → 𝐴 ∈ dom card )
20 simpl1 ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ω ≼ 𝐴 )
21 infxpabs ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 )
22 19 20 15 6 21 syl22anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 )
23 entr ( ( ( 𝐵 × 𝐴 ) ≈ ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ≈ 𝐴 ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 )
24 13 22 23 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐵 × 𝐴 ) ≈ 𝐴 )
25 ssenen ( ( 𝐵 × 𝐴 ) ≈ 𝐴 → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
26 24 25 syl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
27 relen Rel ≈
28 27 brrelex1i ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ∈ V )
29 26 28 syl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ∈ V )
30 abid2 { 𝑥𝑥 ∈ ( 𝐴m 𝐵 ) } = ( 𝐴m 𝐵 )
31 elmapi ( 𝑥 ∈ ( 𝐴m 𝐵 ) → 𝑥 : 𝐵𝐴 )
32 fssxp ( 𝑥 : 𝐵𝐴𝑥 ⊆ ( 𝐵 × 𝐴 ) )
33 ffun ( 𝑥 : 𝐵𝐴 → Fun 𝑥 )
34 vex 𝑥 ∈ V
35 34 fundmen ( Fun 𝑥 → dom 𝑥𝑥 )
36 ensym ( dom 𝑥𝑥𝑥 ≈ dom 𝑥 )
37 33 35 36 3syl ( 𝑥 : 𝐵𝐴𝑥 ≈ dom 𝑥 )
38 fdm ( 𝑥 : 𝐵𝐴 → dom 𝑥 = 𝐵 )
39 37 38 breqtrd ( 𝑥 : 𝐵𝐴𝑥𝐵 )
40 32 39 jca ( 𝑥 : 𝐵𝐴 → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) )
41 31 40 syl ( 𝑥 ∈ ( 𝐴m 𝐵 ) → ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) )
42 41 ss2abi { 𝑥𝑥 ∈ ( 𝐴m 𝐵 ) } ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) }
43 30 42 eqsstrri ( 𝐴m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) }
44 ssdomg ( { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ∈ V → ( ( 𝐴m 𝐵 ) ⊆ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } → ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ) )
45 29 43 44 mpisyl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } )
46 domentr ( ( ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥 ⊆ ( 𝐵 × 𝐴 ) ∧ 𝑥𝐵 ) } ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ) → ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
47 45 26 46 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
48 ovex ( 𝐴m 𝐵 ) ∈ V
49 48 mptex ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ∈ V
50 49 rnex ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ∈ V
51 ensym ( 𝑥𝐵𝐵𝑥 )
52 51 ad2antll ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → 𝐵𝑥 )
53 bren ( 𝐵𝑥 ↔ ∃ 𝑓 𝑓 : 𝐵1-1-onto𝑥 )
54 52 53 sylib ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ∃ 𝑓 𝑓 : 𝐵1-1-onto𝑥 )
55 f1of ( 𝑓 : 𝐵1-1-onto𝑥𝑓 : 𝐵𝑥 )
56 55 adantl ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → 𝑓 : 𝐵𝑥 )
57 simplrl ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → 𝑥𝐴 )
58 56 57 fssd ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → 𝑓 : 𝐵𝐴 )
59 11 9 elmapd ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↔ 𝑓 : 𝐵𝐴 ) )
60 59 ad2antrr ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↔ 𝑓 : 𝐵𝐴 ) )
61 58 60 mpbird ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → 𝑓 ∈ ( 𝐴m 𝐵 ) )
62 f1ofo ( 𝑓 : 𝐵1-1-onto𝑥𝑓 : 𝐵onto𝑥 )
63 forn ( 𝑓 : 𝐵onto𝑥 → ran 𝑓 = 𝑥 )
64 62 63 syl ( 𝑓 : 𝐵1-1-onto𝑥 → ran 𝑓 = 𝑥 )
65 64 adantl ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → ran 𝑓 = 𝑥 )
66 65 eqcomd ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → 𝑥 = ran 𝑓 )
67 61 66 jca ( ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) ∧ 𝑓 : 𝐵1-1-onto𝑥 ) → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) )
68 67 ex ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ( 𝑓 : 𝐵1-1-onto𝑥 → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) )
69 68 eximdv ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ( ∃ 𝑓 𝑓 : 𝐵1-1-onto𝑥 → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) ) )
70 54 69 mpd ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ∃ 𝑓 ( 𝑓 ∈ ( 𝐴m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) )
71 df-rex ( ∃ 𝑓 ∈ ( 𝐴m 𝐵 ) 𝑥 = ran 𝑓 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐴m 𝐵 ) ∧ 𝑥 = ran 𝑓 ) )
72 70 71 sylibr ( ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) ∧ ( 𝑥𝐴𝑥𝐵 ) ) → ∃ 𝑓 ∈ ( 𝐴m 𝐵 ) 𝑥 = ran 𝑓 )
73 72 ex ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( ( 𝑥𝐴𝑥𝐵 ) → ∃ 𝑓 ∈ ( 𝐴m 𝐵 ) 𝑥 = ran 𝑓 ) )
74 73 ss2abdv ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ⊆ { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴m 𝐵 ) 𝑥 = ran 𝑓 } )
75 eqid ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) = ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 )
76 75 rnmpt ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) = { 𝑥 ∣ ∃ 𝑓 ∈ ( 𝐴m 𝐵 ) 𝑥 = ran 𝑓 }
77 74 76 sseqtrrdi ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) )
78 ssdomg ( ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ∈ V → ( { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ⊆ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ) )
79 50 77 78 mpsyl ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) )
80 vex 𝑓 ∈ V
81 80 rnex ran 𝑓 ∈ V
82 81 rgenw 𝑓 ∈ ( 𝐴m 𝐵 ) ran 𝑓 ∈ V
83 75 fnmpt ( ∀ 𝑓 ∈ ( 𝐴m 𝐵 ) ran 𝑓 ∈ V → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴m 𝐵 ) )
84 82 83 mp1i ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴m 𝐵 ) )
85 dffn4 ( ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) Fn ( 𝐴m 𝐵 ) ↔ ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) )
86 84 85 sylib ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) )
87 fodomnum ( ( 𝐴m 𝐵 ) ∈ dom card → ( ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) : ( 𝐴m 𝐵 ) –onto→ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) → ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴m 𝐵 ) ) )
88 14 86 87 sylc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴m 𝐵 ) )
89 domtr ( ( { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ∧ ran ( 𝑓 ∈ ( 𝐴m 𝐵 ) ↦ ran 𝑓 ) ≼ ( 𝐴m 𝐵 ) ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ( 𝐴m 𝐵 ) )
90 79 88 89 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ( 𝐴m 𝐵 ) )
91 sbth ( ( ( 𝐴m 𝐵 ) ≼ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ∧ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } ≼ ( 𝐴m 𝐵 ) ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
92 47 90 91 syl2anc ( ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) ∧ 𝐵 ≠ ∅ ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )
93 7 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
94 93 3ad2ant1 ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → 𝐴 ∈ V )
95 map0e ( 𝐴 ∈ V → ( 𝐴m ∅ ) = 1o )
96 94 95 syl ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → ( 𝐴m ∅ ) = 1o )
97 1oex 1o ∈ V
98 97 enref 1o ≈ 1o
99 df-sn { ∅ } = { 𝑥𝑥 = ∅ }
100 df1o2 1o = { ∅ }
101 en0 ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ )
102 101 anbi2i ( ( 𝑥𝐴𝑥 ≈ ∅ ) ↔ ( 𝑥𝐴𝑥 = ∅ ) )
103 0ss ∅ ⊆ 𝐴
104 sseq1 ( 𝑥 = ∅ → ( 𝑥𝐴 ↔ ∅ ⊆ 𝐴 ) )
105 103 104 mpbiri ( 𝑥 = ∅ → 𝑥𝐴 )
106 105 pm4.71ri ( 𝑥 = ∅ ↔ ( 𝑥𝐴𝑥 = ∅ ) )
107 102 106 bitr4i ( ( 𝑥𝐴𝑥 ≈ ∅ ) ↔ 𝑥 = ∅ )
108 107 abbii { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) } = { 𝑥𝑥 = ∅ }
109 99 100 108 3eqtr4ri { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) } = 1o
110 98 109 breqtrri 1o ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) }
111 96 110 eqbrtrdi ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → ( 𝐴m ∅ ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥 ≈ ∅ ) } )
112 5 92 111 pm2.61ne ( ( ω ≼ 𝐴𝐵𝐴 ∧ ( 𝐴m 𝐵 ) ∈ dom card ) → ( 𝐴m 𝐵 ) ≈ { 𝑥 ∣ ( 𝑥𝐴𝑥𝐵 ) } )