Metamath Proof Explorer


Theorem infmin

Description: The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infmin.1 ( 𝜑𝑅 Or 𝐴 )
infmin.2 ( 𝜑𝐶𝐴 )
infmin.3 ( 𝜑𝐶𝐵 )
infmin.4 ( ( 𝜑𝑦𝐵 ) → ¬ 𝑦 𝑅 𝐶 )
Assertion infmin ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 infmin.1 ( 𝜑𝑅 Or 𝐴 )
2 infmin.2 ( 𝜑𝐶𝐴 )
3 infmin.3 ( 𝜑𝐶𝐵 )
4 infmin.4 ( ( 𝜑𝑦𝐵 ) → ¬ 𝑦 𝑅 𝐶 )
5 simprr ( ( 𝜑 ∧ ( 𝑦𝐴𝐶 𝑅 𝑦 ) ) → 𝐶 𝑅 𝑦 )
6 breq1 ( 𝑧 = 𝐶 → ( 𝑧 𝑅 𝑦𝐶 𝑅 𝑦 ) )
7 6 rspcev ( ( 𝐶𝐵𝐶 𝑅 𝑦 ) → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 )
8 3 5 7 syl2an2r ( ( 𝜑 ∧ ( 𝑦𝐴𝐶 𝑅 𝑦 ) ) → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 )
9 1 2 4 8 eqinfd ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = 𝐶 )