Step |
Hyp |
Ref |
Expression |
1 |
|
reltxrnmnf |
⊢ ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) |
2 |
|
xrltso |
⊢ < Or ℝ* |
3 |
2
|
a1i |
⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → < Or ℝ* ) |
4 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → -∞ ∈ ℝ* ) |
6 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
7 |
|
nltmnf |
⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) |
8 |
6 7
|
syl |
⊢ ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ ) |
9 |
8
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ¬ 𝑦 < -∞ ) |
10 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( -∞ < 𝑥 ↔ -∞ < 𝑦 ) ) |
11 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑧 < 𝑥 ↔ 𝑧 < 𝑦 ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ↔ ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
14 |
13
|
rspcv |
⊢ ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
15 |
14
|
com23 |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ < 𝑦 → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) |
17 |
16
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) |
18 |
3 5 9 17
|
eqinfd |
⊢ ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → inf ( ℝ , ℝ* , < ) = -∞ ) |
19 |
1 18
|
ax-mp |
⊢ inf ( ℝ , ℝ* , < ) = -∞ |