Metamath Proof Explorer


Theorem infmremnf

Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion infmremnf inf ( ℝ , ℝ* , < ) = -∞

Proof

Step Hyp Ref Expression
1 reltxrnmnf 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 )
2 xrltso < Or ℝ*
3 2 a1i ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → < Or ℝ* )
4 mnfxr -∞ ∈ ℝ*
5 4 a1i ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → -∞ ∈ ℝ* )
6 rexr ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* )
7 nltmnf ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ )
8 6 7 syl ( 𝑦 ∈ ℝ → ¬ 𝑦 < -∞ )
9 8 adantl ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ¬ 𝑦 < -∞ )
10 breq2 ( 𝑥 = 𝑦 → ( -∞ < 𝑥 ↔ -∞ < 𝑦 ) )
11 breq2 ( 𝑥 = 𝑦 → ( 𝑧 < 𝑥𝑧 < 𝑦 ) )
12 11 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ↔ ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) )
13 10 12 imbi12d ( 𝑥 = 𝑦 → ( ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ↔ ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) )
14 13 rspcv ( 𝑦 ∈ ℝ* → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ( -∞ < 𝑦 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) )
15 14 com23 ( 𝑦 ∈ ℝ* → ( -∞ < 𝑦 → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) ) )
16 15 imp ( ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) → ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 ) )
17 16 impcom ( ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ -∞ < 𝑦 ) ) → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑦 )
18 3 5 9 17 eqinfd ( ∀ 𝑥 ∈ ℝ* ( -∞ < 𝑥 → ∃ 𝑧 ∈ ℝ 𝑧 < 𝑥 ) → inf ( ℝ , ℝ* , < ) = -∞ )
19 1 18 ax-mp inf ( ℝ , ℝ* , < ) = -∞