Step |
Hyp |
Ref |
Expression |
1 |
|
rpltrp |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 |
2 |
|
ltso |
⊢ < Or ℝ |
3 |
2
|
a1i |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ ) |
4 |
|
0red |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ ) |
5 |
|
0red |
⊢ ( 𝑧 ∈ ℝ+ → 0 ∈ ℝ ) |
6 |
|
rpre |
⊢ ( 𝑧 ∈ ℝ+ → 𝑧 ∈ ℝ ) |
7 |
|
rpge0 |
⊢ ( 𝑧 ∈ ℝ+ → 0 ≤ 𝑧 ) |
8 |
5 6 7
|
lensymd |
⊢ ( 𝑧 ∈ ℝ+ → ¬ 𝑧 < 0 ) |
9 |
8
|
adantl |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ 𝑧 ∈ ℝ+ ) → ¬ 𝑧 < 0 ) |
10 |
|
elrp |
⊢ ( 𝑧 ∈ ℝ+ ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) |
11 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 < 𝑥 ↔ 𝑦 < 𝑧 ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
13 |
12
|
rspcv |
⊢ ( 𝑧 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
14 |
10 13
|
sylbir |
⊢ ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) ) |
15 |
14
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) |
16 |
3 4 9 15
|
eqinfd |
⊢ ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf ( ℝ+ , ℝ , < ) = 0 ) |
17 |
1 16
|
ax-mp |
⊢ inf ( ℝ+ , ℝ , < ) = 0 |