Metamath Proof Explorer


Theorem infn0

Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004)

Ref Expression
Assertion infn0 ( ω ≼ 𝐴𝐴 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 infsdomnn ( ( ω ≼ 𝐴 ∧ ∅ ∈ ω ) → ∅ ≺ 𝐴 )
3 1 2 mpan2 ( ω ≼ 𝐴 → ∅ ≺ 𝐴 )
4 reldom Rel ≼
5 4 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
6 0sdomg ( 𝐴 ∈ V → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
7 5 6 syl ( ω ≼ 𝐴 → ( ∅ ≺ 𝐴𝐴 ≠ ∅ ) )
8 3 7 mpbid ( ω ≼ 𝐴𝐴 ≠ ∅ )