Description: An infinite set is not empty. (Contributed by NM, 23-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | infn0 | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | ⊢ ∅ ∈ ω | |
2 | infsdomnn | ⊢ ( ( ω ≼ 𝐴 ∧ ∅ ∈ ω ) → ∅ ≺ 𝐴 ) | |
3 | 1 2 | mpan2 | ⊢ ( ω ≼ 𝐴 → ∅ ≺ 𝐴 ) |
4 | reldom | ⊢ Rel ≼ | |
5 | 4 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
6 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
7 | 5 6 | syl | ⊢ ( ω ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
8 | 3 7 | mpbid | ⊢ ( ω ≼ 𝐴 → 𝐴 ≠ ∅ ) |