| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brdomi | ⊢ ( ω  ≼  𝐴  →  ∃ 𝑓 𝑓 : ω –1-1→ 𝐴 ) | 
						
							| 2 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 3 |  | f1f1orn | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝑓 : ω –1-1-onto→ ran  𝑓 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ )  →  𝑓 : ω –1-1-onto→ ran  𝑓 ) | 
						
							| 5 |  | f1f | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝑓 : ω ⟶ 𝐴 ) | 
						
							| 6 | 5 | frnd | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  ran  𝑓  ⊆  𝐴 ) | 
						
							| 7 |  | sseq0 | ⊢ ( ( ran  𝑓  ⊆  𝐴  ∧  𝐴  =  ∅ )  →  ran  𝑓  =  ∅ ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ )  →  ran  𝑓  =  ∅ ) | 
						
							| 9 | 8 | f1oeq3d | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ )  →  ( 𝑓 : ω –1-1-onto→ ran  𝑓  ↔  𝑓 : ω –1-1-onto→ ∅ ) ) | 
						
							| 10 | 4 9 | mpbid | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ )  →  𝑓 : ω –1-1-onto→ ∅ ) | 
						
							| 11 |  | f1ocnv | ⊢ ( 𝑓 : ω –1-1-onto→ ∅  →  ◡ 𝑓 : ∅ –1-1-onto→ ω ) | 
						
							| 12 |  | noel | ⊢ ¬  ∅  ∈  ∅ | 
						
							| 13 |  | f1o00 | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω  ↔  ( ◡ 𝑓  =  ∅  ∧  ω  =  ∅ ) ) | 
						
							| 14 | 13 | simprbi | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω  →  ω  =  ∅ ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω  →  ( ∅  ∈  ω  ↔  ∅  ∈  ∅ ) ) | 
						
							| 16 | 12 15 | mtbiri | ⊢ ( ◡ 𝑓 : ∅ –1-1-onto→ ω  →  ¬  ∅  ∈  ω ) | 
						
							| 17 | 10 11 16 | 3syl | ⊢ ( ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ )  →  ¬  ∅  ∈  ω ) | 
						
							| 18 | 2 17 | mt2 | ⊢ ¬  ( 𝑓 : ω –1-1→ 𝐴  ∧  𝐴  =  ∅ ) | 
						
							| 19 | 18 | imnani | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  ¬  𝐴  =  ∅ ) | 
						
							| 20 | 19 | neqned | ⊢ ( 𝑓 : ω –1-1→ 𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : ω –1-1→ 𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 22 | 1 21 | syl | ⊢ ( ω  ≼  𝐴  →  𝐴  ≠  ∅ ) |