Metamath Proof Explorer
		
		
		
		Description:  Shorter proof of infn0 using ax-un .  (Contributed by NM, 23-Oct-2004)  (Proof modification is discouraged.)
     (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | infn0ALT | ⊢  ( ω  ≼  𝐴  →  𝐴  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 2 |  | infsdomnn | ⊢ ( ( ω  ≼  𝐴  ∧  ∅  ∈  ω )  →  ∅  ≺  𝐴 ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( ω  ≼  𝐴  →  ∅  ≺  𝐴 ) | 
						
							| 4 |  | reldom | ⊢ Rel   ≼ | 
						
							| 5 | 4 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 |  | 0sdomg | ⊢ ( 𝐴  ∈  V  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ω  ≼  𝐴  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 8 | 3 7 | mpbid | ⊢ ( ω  ≼  𝐴  →  𝐴  ≠  ∅ ) |