Step |
Hyp |
Ref |
Expression |
1 |
|
infpnlem.1 |
⊢ 𝐾 = ( ( ! ‘ 𝑁 ) + 1 ) |
2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
3 |
2
|
faccld |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) ∈ ℕ ) |
4 |
3
|
peano2nnd |
⊢ ( 𝑁 ∈ ℕ → ( ( ! ‘ 𝑁 ) + 1 ) ∈ ℕ ) |
5 |
1 4
|
eqeltrid |
⊢ ( 𝑁 ∈ ℕ → 𝐾 ∈ ℕ ) |
6 |
3
|
nnge1d |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ ( ! ‘ 𝑁 ) ) |
7 |
|
1nn |
⊢ 1 ∈ ℕ |
8 |
|
nnleltp1 |
⊢ ( ( 1 ∈ ℕ ∧ ( ! ‘ 𝑁 ) ∈ ℕ ) → ( 1 ≤ ( ! ‘ 𝑁 ) ↔ 1 < ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
9 |
7 3 8
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 1 ≤ ( ! ‘ 𝑁 ) ↔ 1 < ( ( ! ‘ 𝑁 ) + 1 ) ) ) |
10 |
6 9
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → 1 < ( ( ! ‘ 𝑁 ) + 1 ) ) |
11 |
10 1
|
breqtrrdi |
⊢ ( 𝑁 ∈ ℕ → 1 < 𝐾 ) |
12 |
|
nncn |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℂ ) |
13 |
|
nnne0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ≠ 0 ) |
14 |
12 13
|
jca |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ∈ ℂ ∧ 𝐾 ≠ 0 ) ) |
15 |
|
divid |
⊢ ( ( 𝐾 ∈ ℂ ∧ 𝐾 ≠ 0 ) → ( 𝐾 / 𝐾 ) = 1 ) |
16 |
5 14 15
|
3syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 / 𝐾 ) = 1 ) |
17 |
16 7
|
eqeltrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝐾 / 𝐾 ) ∈ ℕ ) |
18 |
|
breq2 |
⊢ ( 𝑗 = 𝐾 → ( 1 < 𝑗 ↔ 1 < 𝐾 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝐾 / 𝑗 ) = ( 𝐾 / 𝐾 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝐾 / 𝑗 ) ∈ ℕ ↔ ( 𝐾 / 𝐾 ) ∈ ℕ ) ) |
21 |
18 20
|
anbi12d |
⊢ ( 𝑗 = 𝐾 → ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ↔ ( 1 < 𝐾 ∧ ( 𝐾 / 𝐾 ) ∈ ℕ ) ) ) |
22 |
21
|
rspcev |
⊢ ( ( 𝐾 ∈ ℕ ∧ ( 1 < 𝐾 ∧ ( 𝐾 / 𝐾 ) ∈ ℕ ) ) → ∃ 𝑗 ∈ ℕ ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ) |
23 |
5 11 17 22
|
syl12anc |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑗 ∈ ℕ ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ) |
24 |
|
breq2 |
⊢ ( 𝑗 = 𝑘 → ( 1 < 𝑗 ↔ 1 < 𝑘 ) ) |
25 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐾 / 𝑗 ) = ( 𝐾 / 𝑘 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝐾 / 𝑗 ) ∈ ℕ ↔ ( 𝐾 / 𝑘 ) ∈ ℕ ) ) |
27 |
24 26
|
anbi12d |
⊢ ( 𝑗 = 𝑘 → ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ↔ ( 1 < 𝑘 ∧ ( 𝐾 / 𝑘 ) ∈ ℕ ) ) ) |
28 |
27
|
nnwos |
⊢ ( ∃ 𝑗 ∈ ℕ ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) → ∃ 𝑗 ∈ ℕ ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ∧ ∀ 𝑘 ∈ ℕ ( ( 1 < 𝑘 ∧ ( 𝐾 / 𝑘 ) ∈ ℕ ) → 𝑗 ≤ 𝑘 ) ) ) |
29 |
23 28
|
syl |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑗 ∈ ℕ ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ∧ ∀ 𝑘 ∈ ℕ ( ( 1 < 𝑘 ∧ ( 𝐾 / 𝑘 ) ∈ ℕ ) → 𝑗 ≤ 𝑘 ) ) ) |
30 |
1
|
infpnlem1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ ) → ( ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ∧ ∀ 𝑘 ∈ ℕ ( ( 1 < 𝑘 ∧ ( 𝐾 / 𝑘 ) ∈ ℕ ) → 𝑗 ≤ 𝑘 ) ) → ( 𝑁 < 𝑗 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑗 / 𝑘 ) ∈ ℕ → ( 𝑘 = 1 ∨ 𝑘 = 𝑗 ) ) ) ) ) |
31 |
30
|
reximdva |
⊢ ( 𝑁 ∈ ℕ → ( ∃ 𝑗 ∈ ℕ ( ( 1 < 𝑗 ∧ ( 𝐾 / 𝑗 ) ∈ ℕ ) ∧ ∀ 𝑘 ∈ ℕ ( ( 1 < 𝑘 ∧ ( 𝐾 / 𝑘 ) ∈ ℕ ) → 𝑗 ≤ 𝑘 ) ) → ∃ 𝑗 ∈ ℕ ( 𝑁 < 𝑗 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑗 / 𝑘 ) ∈ ℕ → ( 𝑘 = 1 ∨ 𝑘 = 𝑗 ) ) ) ) ) |
32 |
29 31
|
mpd |
⊢ ( 𝑁 ∈ ℕ → ∃ 𝑗 ∈ ℕ ( 𝑁 < 𝑗 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝑗 / 𝑘 ) ∈ ℕ → ( 𝑘 = 1 ∨ 𝑘 = 𝑗 ) ) ) ) |