Metamath Proof Explorer


Theorem infpss

Description: Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of TakeutiZaring p. 91. See also infpssALT . (Contributed by NM, 23-Oct-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion infpss ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 infn0 ( ω ≼ 𝐴𝐴 ≠ ∅ )
2 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐴 )
3 1 2 sylib ( ω ≼ 𝐴 → ∃ 𝑦 𝑦𝐴 )
4 reldom Rel ≼
5 4 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
6 difexg ( 𝐴 ∈ V → ( 𝐴 ∖ { 𝑦 } ) ∈ V )
7 5 6 syl ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ∈ V )
8 7 adantr ( ( ω ≼ 𝐴𝑦𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ V )
9 simpr ( ( ω ≼ 𝐴𝑦𝐴 ) → 𝑦𝐴 )
10 difsnpss ( 𝑦𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 )
11 9 10 sylib ( ( ω ≼ 𝐴𝑦𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 )
12 infdifsn ( ω ≼ 𝐴 → ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 )
13 12 adantr ( ( ω ≼ 𝐴𝑦𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 )
14 11 13 jca ( ( ω ≼ 𝐴𝑦𝐴 ) → ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) )
15 psseq1 ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) )
16 breq1 ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( 𝑥𝐴 ↔ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) )
17 15 16 anbi12d ( 𝑥 = ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝑥𝐴𝑥𝐴 ) ↔ ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≈ 𝐴 ) ) )
18 8 14 17 spcedv ( ( ω ≼ 𝐴𝑦𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )
19 3 18 exlimddv ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )