| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infn0 | ⊢ ( ω  ≼  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 2 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 3 | 1 2 | sylib | ⊢ ( ω  ≼  𝐴  →  ∃ 𝑦 𝑦  ∈  𝐴 ) | 
						
							| 4 |  | reldom | ⊢ Rel   ≼ | 
						
							| 5 | 4 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 6 | 5 | difexd | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ∖  { 𝑦 } )  ∈  V ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ∈  V ) | 
						
							| 8 |  | simpr | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 9 |  | difsnpss | ⊢ ( 𝑦  ∈  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) | 
						
							| 11 |  | infdifsn | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ∖  { 𝑦 } )  ≈  𝐴 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝐴  ∖  { 𝑦 } )  ≈  𝐴 ) | 
						
							| 13 | 10 12 | jca | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴  ∧  ( 𝐴  ∖  { 𝑦 } )  ≈  𝐴 ) ) | 
						
							| 14 |  | psseq1 | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝑥  ⊊  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴 ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( 𝑥  ≈  𝐴  ↔  ( 𝐴  ∖  { 𝑦 } )  ≈  𝐴 ) ) | 
						
							| 16 | 14 15 | anbi12d | ⊢ ( 𝑥  =  ( 𝐴  ∖  { 𝑦 } )  →  ( ( 𝑥  ⊊  𝐴  ∧  𝑥  ≈  𝐴 )  ↔  ( ( 𝐴  ∖  { 𝑦 } )  ⊊  𝐴  ∧  ( 𝐴  ∖  { 𝑦 } )  ≈  𝐴 ) ) ) | 
						
							| 17 | 7 13 16 | spcedv | ⊢ ( ( ω  ≼  𝐴  ∧  𝑦  ∈  𝐴 )  →  ∃ 𝑥 ( 𝑥  ⊊  𝐴  ∧  𝑥  ≈  𝐴 ) ) | 
						
							| 18 | 3 17 | exlimddv | ⊢ ( ω  ≼  𝐴  →  ∃ 𝑥 ( 𝑥  ⊊  𝐴  ∧  𝑥  ≈  𝐴 ) ) |