Metamath Proof Explorer


Theorem infpssALT

Description: Alternate proof of infpss , shorter but requiring Replacement ( ax-rep ). (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion infpssALT ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )

Proof

Step Hyp Ref Expression
1 ominf4 ¬ ω ∈ FinIV
2 reldom Rel ≼
3 2 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
4 isfin4 ( 𝐴 ∈ V → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) ) )
5 3 4 syl ( ω ≼ 𝐴 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) ) )
6 domfin4 ( ( 𝐴 ∈ FinIV ∧ ω ≼ 𝐴 ) → ω ∈ FinIV )
7 6 expcom ( ω ≼ 𝐴 → ( 𝐴 ∈ FinIV → ω ∈ FinIV ) )
8 5 7 sylbird ( ω ≼ 𝐴 → ( ¬ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) → ω ∈ FinIV ) )
9 1 8 mt3i ( ω ≼ 𝐴 → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )