| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pssnel | ⊢ ( 𝑋  ⊊  𝐴  →  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝑋 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑋  ⊊  𝐴  ∧  𝑋  ≈  𝐴 )  →  ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝑋 ) ) | 
						
							| 3 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ↔  ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝑋 ) ) | 
						
							| 4 |  | pssss | ⊢ ( 𝑋  ⊊  𝐴  →  𝑋  ⊆  𝐴 ) | 
						
							| 5 |  | bren | ⊢ ( 𝑋  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  𝑓 : 𝑋 –1-1-onto→ 𝐴 ) | 
						
							| 7 |  | f1ofo | ⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝐴  →  𝑓 : 𝑋 –onto→ 𝐴 ) | 
						
							| 8 |  | forn | ⊢ ( 𝑓 : 𝑋 –onto→ 𝐴  →  ran  𝑓  =  𝐴 ) | 
						
							| 9 | 6 7 8 | 3syl | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  ran  𝑓  =  𝐴 ) | 
						
							| 10 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 11 | 10 | rnex | ⊢ ran  𝑓  ∈  V | 
						
							| 12 | 9 11 | eqeltrrdi | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  𝐴  ∈  V ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  𝑋  ⊆  𝐴 ) | 
						
							| 14 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  𝑦  ∈  ( 𝐴  ∖  𝑋 ) ) | 
						
							| 15 |  | eqid | ⊢ ( rec ( ◡ 𝑓 ,  𝑦 )  ↾  ω )  =  ( rec ( ◡ 𝑓 ,  𝑦 )  ↾  ω ) | 
						
							| 16 | 13 6 14 15 | infpssrlem5 | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  ( 𝐴  ∈  V  →  ω  ≼  𝐴 ) ) | 
						
							| 17 | 12 16 | mpd | ⊢ ( ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  ∧  𝑓 : 𝑋 –1-1-onto→ 𝐴 )  →  ω  ≼  𝐴 ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  →  ( 𝑓 : 𝑋 –1-1-onto→ 𝐴  →  ω  ≼  𝐴 ) ) | 
						
							| 19 | 18 | exlimdv | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  →  ( ∃ 𝑓 𝑓 : 𝑋 –1-1-onto→ 𝐴  →  ω  ≼  𝐴 ) ) | 
						
							| 20 | 5 19 | biimtrid | ⊢ ( ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  ∧  𝑋  ⊆  𝐴 )  →  ( 𝑋  ≈  𝐴  →  ω  ≼  𝐴 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  →  ( 𝑋  ⊆  𝐴  →  ( 𝑋  ≈  𝐴  →  ω  ≼  𝐴 ) ) ) | 
						
							| 22 | 4 21 | syl5 | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  →  ( 𝑋  ⊊  𝐴  →  ( 𝑋  ≈  𝐴  →  ω  ≼  𝐴 ) ) ) | 
						
							| 23 | 22 | impd | ⊢ ( 𝑦  ∈  ( 𝐴  ∖  𝑋 )  →  ( ( 𝑋  ⊊  𝐴  ∧  𝑋  ≈  𝐴 )  →  ω  ≼  𝐴 ) ) | 
						
							| 24 | 3 23 | sylbir | ⊢ ( ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ⊊  𝐴  ∧  𝑋  ≈  𝐴 )  →  ω  ≼  𝐴 ) ) | 
						
							| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝐴  ∧  ¬  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ⊊  𝐴  ∧  𝑋  ≈  𝐴 )  →  ω  ≼  𝐴 ) ) | 
						
							| 26 | 2 25 | mpcom | ⊢ ( ( 𝑋  ⊊  𝐴  ∧  𝑋  ≈  𝐴 )  →  ω  ≼  𝐴 ) |