Metamath Proof Explorer


Theorem infpssrlem2

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a ( 𝜑𝐵𝐴 )
infpssrlem.c ( 𝜑𝐹 : 𝐵1-1-onto𝐴 )
infpssrlem.d ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
infpssrlem.e 𝐺 = ( rec ( 𝐹 , 𝐶 ) ↾ ω )
Assertion infpssrlem2 ( 𝑀 ∈ ω → ( 𝐺 ‘ suc 𝑀 ) = ( 𝐹 ‘ ( 𝐺𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 infpssrlem.a ( 𝜑𝐵𝐴 )
2 infpssrlem.c ( 𝜑𝐹 : 𝐵1-1-onto𝐴 )
3 infpssrlem.d ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
4 infpssrlem.e 𝐺 = ( rec ( 𝐹 , 𝐶 ) ↾ ω )
5 frsuc ( 𝑀 ∈ ω → ( ( rec ( 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) ) )
6 4 fveq1i ( 𝐺 ‘ suc 𝑀 ) = ( ( rec ( 𝐹 , 𝐶 ) ↾ ω ) ‘ suc 𝑀 )
7 4 fveq1i ( 𝐺𝑀 ) = ( ( rec ( 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 )
8 7 fveq2i ( 𝐹 ‘ ( 𝐺𝑀 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐹 , 𝐶 ) ↾ ω ) ‘ 𝑀 ) )
9 5 6 8 3eqtr4g ( 𝑀 ∈ ω → ( 𝐺 ‘ suc 𝑀 ) = ( 𝐹 ‘ ( 𝐺𝑀 ) ) )