| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infpssrlem.a |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 2 |
|
infpssrlem.c |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 3 |
|
infpssrlem.d |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 4 |
|
infpssrlem.e |
⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) |
| 5 |
|
frfnom |
⊢ ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) Fn ω |
| 6 |
4
|
fneq1i |
⊢ ( 𝐺 Fn ω ↔ ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) Fn ω ) |
| 7 |
5 6
|
mpbir |
⊢ 𝐺 Fn ω |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 𝐺 Fn ω ) |
| 9 |
|
fveq2 |
⊢ ( 𝑐 = ∅ → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ ∅ ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑐 = ∅ → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑐 = 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ 𝑏 ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑐 = suc 𝑏 → ( 𝐺 ‘ 𝑐 ) = ( 𝐺 ‘ suc 𝑏 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑐 = suc 𝑏 → ( ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ↔ ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) |
| 15 |
1 2 3 4
|
infpssrlem1 |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) = 𝐶 ) |
| 16 |
3
|
eldifad |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 17 |
15 16
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ∅ ) ∈ 𝐴 ) |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → 𝐵 ⊆ 𝐴 ) |
| 19 |
|
f1ocnv |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 20 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 21 |
2 19 20
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 22 |
21
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐵 ) |
| 23 |
18 22
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐴 ) |
| 24 |
1 2 3 4
|
infpssrlem2 |
⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ suc 𝑏 ) = ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ) |
| 25 |
24
|
eleq1d |
⊢ ( 𝑏 ∈ ω → ( ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ↔ ( ◡ 𝐹 ‘ ( 𝐺 ‘ 𝑏 ) ) ∈ 𝐴 ) ) |
| 26 |
23 25
|
imbitrrid |
⊢ ( 𝑏 ∈ ω → ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 ) → ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) |
| 27 |
26
|
expd |
⊢ ( 𝑏 ∈ ω → ( 𝜑 → ( ( 𝐺 ‘ 𝑏 ) ∈ 𝐴 → ( 𝐺 ‘ suc 𝑏 ) ∈ 𝐴 ) ) ) |
| 28 |
10 12 14 17 27
|
finds2 |
⊢ ( 𝑐 ∈ ω → ( 𝜑 → ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) |
| 29 |
28
|
com12 |
⊢ ( 𝜑 → ( 𝑐 ∈ ω → ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) |
| 30 |
29
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ω ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) |
| 31 |
|
ffnfv |
⊢ ( 𝐺 : ω ⟶ 𝐴 ↔ ( 𝐺 Fn ω ∧ ∀ 𝑐 ∈ ω ( 𝐺 ‘ 𝑐 ) ∈ 𝐴 ) ) |
| 32 |
8 30 31
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |