Metamath Proof Explorer


Theorem infpssrlem5

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a ( 𝜑𝐵𝐴 )
infpssrlem.c ( 𝜑𝐹 : 𝐵1-1-onto𝐴 )
infpssrlem.d ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
infpssrlem.e 𝐺 = ( rec ( 𝐹 , 𝐶 ) ↾ ω )
Assertion infpssrlem5 ( 𝜑 → ( 𝐴𝑉 → ω ≼ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 infpssrlem.a ( 𝜑𝐵𝐴 )
2 infpssrlem.c ( 𝜑𝐹 : 𝐵1-1-onto𝐴 )
3 infpssrlem.d ( 𝜑𝐶 ∈ ( 𝐴𝐵 ) )
4 infpssrlem.e 𝐺 = ( rec ( 𝐹 , 𝐶 ) ↾ ω )
5 1 2 3 4 infpssrlem3 ( 𝜑𝐺 : ω ⟶ 𝐴 )
6 simpll ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏𝑐 ) → 𝜑 )
7 simplrr ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏𝑐 ) → 𝑐 ∈ ω )
8 simpr ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏𝑐 ) → 𝑏𝑐 )
9 1 2 3 4 infpssrlem4 ( ( 𝜑𝑐 ∈ ω ∧ 𝑏𝑐 ) → ( 𝐺𝑐 ) ≠ ( 𝐺𝑏 ) )
10 6 7 8 9 syl3anc ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏𝑐 ) → ( 𝐺𝑐 ) ≠ ( 𝐺𝑏 ) )
11 10 necomd ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏𝑐 ) → ( 𝐺𝑏 ) ≠ ( 𝐺𝑐 ) )
12 simpll ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐𝑏 ) → 𝜑 )
13 simplrl ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐𝑏 ) → 𝑏 ∈ ω )
14 simpr ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐𝑏 ) → 𝑐𝑏 )
15 1 2 3 4 infpssrlem4 ( ( 𝜑𝑏 ∈ ω ∧ 𝑐𝑏 ) → ( 𝐺𝑏 ) ≠ ( 𝐺𝑐 ) )
16 12 13 14 15 syl3anc ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐𝑏 ) → ( 𝐺𝑏 ) ≠ ( 𝐺𝑐 ) )
17 11 16 jaodan ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ ( 𝑏𝑐𝑐𝑏 ) ) → ( 𝐺𝑏 ) ≠ ( 𝐺𝑐 ) )
18 17 ex ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝑏𝑐𝑐𝑏 ) → ( 𝐺𝑏 ) ≠ ( 𝐺𝑐 ) ) )
19 18 necon2bd ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺𝑏 ) = ( 𝐺𝑐 ) → ¬ ( 𝑏𝑐𝑐𝑏 ) ) )
20 nnord ( 𝑏 ∈ ω → Ord 𝑏 )
21 nnord ( 𝑐 ∈ ω → Ord 𝑐 )
22 ordtri3 ( ( Ord 𝑏 ∧ Ord 𝑐 ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏𝑐𝑐𝑏 ) ) )
23 20 21 22 syl2an ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏𝑐𝑐𝑏 ) ) )
24 23 adantl ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏𝑐𝑐𝑏 ) ) )
25 19 24 sylibrd ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺𝑏 ) = ( 𝐺𝑐 ) → 𝑏 = 𝑐 ) )
26 25 ralrimivva ( 𝜑 → ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺𝑏 ) = ( 𝐺𝑐 ) → 𝑏 = 𝑐 ) )
27 dff13 ( 𝐺 : ω –1-1𝐴 ↔ ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺𝑏 ) = ( 𝐺𝑐 ) → 𝑏 = 𝑐 ) ) )
28 5 26 27 sylanbrc ( 𝜑𝐺 : ω –1-1𝐴 )
29 f1domg ( 𝐴𝑉 → ( 𝐺 : ω –1-1𝐴 → ω ≼ 𝐴 ) )
30 28 29 syl5com ( 𝜑 → ( 𝐴𝑉 → ω ≼ 𝐴 ) )