Step |
Hyp |
Ref |
Expression |
1 |
|
infpssrlem.a |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
2 |
|
infpssrlem.c |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
3 |
|
infpssrlem.d |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ∖ 𝐵 ) ) |
4 |
|
infpssrlem.e |
⊢ 𝐺 = ( rec ( ◡ 𝐹 , 𝐶 ) ↾ ω ) |
5 |
1 2 3 4
|
infpssrlem3 |
⊢ ( 𝜑 → 𝐺 : ω ⟶ 𝐴 ) |
6 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝜑 ) |
7 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝑐 ∈ ω ) |
8 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → 𝑏 ∈ 𝑐 ) |
9 |
1 2 3 4
|
infpssrlem4 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ω ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑐 ) ≠ ( 𝐺 ‘ 𝑏 ) ) |
11 |
10
|
necomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑏 ∈ 𝑐 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
12 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝜑 ) |
13 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝑏 ∈ ω ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → 𝑐 ∈ 𝑏 ) |
15 |
1 2 3 4
|
infpssrlem4 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ω ∧ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
16 |
12 13 14 15
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
17 |
11 16
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) → ( 𝐺 ‘ 𝑏 ) ≠ ( 𝐺 ‘ 𝑐 ) ) ) |
19 |
18
|
necon2bd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
20 |
|
nnord |
⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) |
21 |
|
nnord |
⊢ ( 𝑐 ∈ ω → Ord 𝑐 ) |
22 |
|
ordtri3 |
⊢ ( ( Ord 𝑏 ∧ Ord 𝑐 ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
23 |
20 21 22
|
syl2an |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( 𝑏 = 𝑐 ↔ ¬ ( 𝑏 ∈ 𝑐 ∨ 𝑐 ∈ 𝑏 ) ) ) |
25 |
19 24
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) |
26 |
25
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) |
27 |
|
dff13 |
⊢ ( 𝐺 : ω –1-1→ 𝐴 ↔ ( 𝐺 : ω ⟶ 𝐴 ∧ ∀ 𝑏 ∈ ω ∀ 𝑐 ∈ ω ( ( 𝐺 ‘ 𝑏 ) = ( 𝐺 ‘ 𝑐 ) → 𝑏 = 𝑐 ) ) ) |
28 |
5 26 27
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 : ω –1-1→ 𝐴 ) |
29 |
|
f1domg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐺 : ω –1-1→ 𝐴 → ω ≼ 𝐴 ) ) |
30 |
28 29
|
syl5com |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ω ≼ 𝐴 ) ) |