Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption ( ~P A i^i Fin ) e. _V because this theorem also implies that A is a set if ~P A i^i Fin is.) (Contributed by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpwfidom | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpwi | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ 𝒫 𝐴 ) | |
| 2 | snfi | ⊢ { 𝑥 } ∈ Fin | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ Fin ) |
| 4 | 1 3 | elind | ⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 5 | sneqbg | ⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) ) |
| 7 | 4 6 | dom2 | ⊢ ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) ) |