Metamath Proof Explorer


Theorem infpwfidom

Description: The collection of finite subsets of a set dominates the set. (We use the weaker sethood assumption ( ~P A i^i Fin ) e. _V because this theorem also implies that A is a set if ~P A i^i Fin is.) (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion infpwfidom ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) )

Proof

Step Hyp Ref Expression
1 snelpwi ( 𝑥𝐴 → { 𝑥 } ∈ 𝒫 𝐴 )
2 snfi { 𝑥 } ∈ Fin
3 2 a1i ( 𝑥𝐴 → { 𝑥 } ∈ Fin )
4 1 3 elind ( 𝑥𝐴 → { 𝑥 } ∈ ( 𝒫 𝐴 ∩ Fin ) )
5 sneqbg ( 𝑥𝐴 → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) )
6 5 adantr ( ( 𝑥𝐴𝑦𝐴 ) → ( { 𝑥 } = { 𝑦 } ↔ 𝑥 = 𝑦 ) )
7 4 6 dom2 ( ( 𝒫 𝐴 ∩ Fin ) ∈ V → 𝐴 ≼ ( 𝒫 𝐴 ∩ Fin ) )