| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infxpidm2 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝐴  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 2 |  | infn0 | ⊢ ( ω  ≼  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  𝐴  ≠  ∅ ) | 
						
							| 4 |  | fseqen | ⊢ ( ( ( 𝐴  ×  𝐴 )  ≈  𝐴  ∧  𝐴  ≠  ∅ )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≈  ( ω  ×  𝐴 ) ) | 
						
							| 5 | 1 3 4 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≈  ( ω  ×  𝐴 ) ) | 
						
							| 6 |  | xpdom1g | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ω  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 ) ) | 
						
							| 7 |  | domentr | ⊢ ( ( ( ω  ×  𝐴 )  ≼  ( 𝐴  ×  𝐴 )  ∧  ( 𝐴  ×  𝐴 )  ≈  𝐴 )  →  ( ω  ×  𝐴 )  ≼  𝐴 ) | 
						
							| 8 | 6 1 7 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ω  ×  𝐴 )  ≼  𝐴 ) | 
						
							| 9 |  | endomtr | ⊢ ( ( ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≈  ( ω  ×  𝐴 )  ∧  ( ω  ×  𝐴 )  ≼  𝐴 )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≼  𝐴 ) | 
						
							| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≼  𝐴 ) | 
						
							| 11 |  | numdom | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≼  𝐴 )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∈  dom  card ) | 
						
							| 12 | 10 11 | syldan | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∈  dom  card ) | 
						
							| 13 |  | eliun | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↔  ∃ 𝑛  ∈  ω 𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 14 |  | elmapi | ⊢ ( 𝑥  ∈  ( 𝐴  ↑m  𝑛 )  →  𝑥 : 𝑛 ⟶ 𝐴 ) | 
						
							| 15 | 14 | ad2antll | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  𝑥 : 𝑛 ⟶ 𝐴 ) | 
						
							| 16 | 15 | frnd | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  ran  𝑥  ⊆  𝐴 ) | 
						
							| 17 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 18 | 17 | rnex | ⊢ ran  𝑥  ∈  V | 
						
							| 19 | 18 | elpw | ⊢ ( ran  𝑥  ∈  𝒫  𝐴  ↔  ran  𝑥  ⊆  𝐴 ) | 
						
							| 20 | 16 19 | sylibr | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  ran  𝑥  ∈  𝒫  𝐴 ) | 
						
							| 21 |  | simprl | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  𝑛  ∈  ω ) | 
						
							| 22 |  | ssid | ⊢ 𝑛  ⊆  𝑛 | 
						
							| 23 |  | ssnnfi | ⊢ ( ( 𝑛  ∈  ω  ∧  𝑛  ⊆  𝑛 )  →  𝑛  ∈  Fin ) | 
						
							| 24 | 21 22 23 | sylancl | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  𝑛  ∈  Fin ) | 
						
							| 25 |  | ffn | ⊢ ( 𝑥 : 𝑛 ⟶ 𝐴  →  𝑥  Fn  𝑛 ) | 
						
							| 26 |  | dffn4 | ⊢ ( 𝑥  Fn  𝑛  ↔  𝑥 : 𝑛 –onto→ ran  𝑥 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( 𝑥 : 𝑛 ⟶ 𝐴  →  𝑥 : 𝑛 –onto→ ran  𝑥 ) | 
						
							| 28 | 15 27 | syl | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  𝑥 : 𝑛 –onto→ ran  𝑥 ) | 
						
							| 29 |  | fofi | ⊢ ( ( 𝑛  ∈  Fin  ∧  𝑥 : 𝑛 –onto→ ran  𝑥 )  →  ran  𝑥  ∈  Fin ) | 
						
							| 30 | 24 28 29 | syl2anc | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  ran  𝑥  ∈  Fin ) | 
						
							| 31 | 20 30 | elind | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) )  →  ran  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 32 | 31 | expr | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑛  ∈  ω )  →  ( 𝑥  ∈  ( 𝐴  ↑m  𝑛 )  →  ran  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 33 | 32 | rexlimdva | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( ∃ 𝑛  ∈  ω 𝑥  ∈  ( 𝐴  ↑m  𝑛 )  →  ran  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 34 | 13 33 | biimtrid | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  →  ran  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 35 | 34 | imp | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) )  →  ran  𝑥  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 36 | 35 | fmpttd | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) : ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ⟶ ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 37 | 36 | ffnd | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  Fn  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 38 | 36 | frnd | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  ⊆  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 40 | 39 | elin2d | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  𝑦  ∈  Fin ) | 
						
							| 41 |  | isfi | ⊢ ( 𝑦  ∈  Fin  ↔  ∃ 𝑚  ∈  ω 𝑦  ≈  𝑚 ) | 
						
							| 42 | 40 41 | sylib | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ∃ 𝑚  ∈  ω 𝑦  ≈  𝑚 ) | 
						
							| 43 |  | ensym | ⊢ ( 𝑦  ≈  𝑚  →  𝑚  ≈  𝑦 ) | 
						
							| 44 |  | bren | ⊢ ( 𝑚  ≈  𝑦  ↔  ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) | 
						
							| 45 | 43 44 | sylib | ⊢ ( 𝑦  ≈  𝑚  →  ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦 ) | 
						
							| 46 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑚  ∈  ω ) | 
						
							| 47 |  | f1of | ⊢ ( 𝑥 : 𝑚 –1-1-onto→ 𝑦  →  𝑥 : 𝑚 ⟶ 𝑦 ) | 
						
							| 48 | 47 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑥 : 𝑚 ⟶ 𝑦 ) | 
						
							| 49 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 50 | 49 | elin1d | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑦  ∈  𝒫  𝐴 ) | 
						
							| 51 | 50 | elpwid | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑦  ⊆  𝐴 ) | 
						
							| 52 | 48 51 | fssd | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑥 : 𝑚 ⟶ 𝐴 ) | 
						
							| 53 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝐴  ∈  dom  card ) | 
						
							| 54 |  | vex | ⊢ 𝑚  ∈  V | 
						
							| 55 |  | elmapg | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝑚  ∈  V )  →  ( 𝑥  ∈  ( 𝐴  ↑m  𝑚 )  ↔  𝑥 : 𝑚 ⟶ 𝐴 ) ) | 
						
							| 56 | 53 54 55 | sylancl | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  ( 𝑥  ∈  ( 𝐴  ↑m  𝑚 )  ↔  𝑥 : 𝑚 ⟶ 𝐴 ) ) | 
						
							| 57 | 52 56 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑥  ∈  ( 𝐴  ↑m  𝑚 ) ) | 
						
							| 58 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐴  ↑m  𝑛 )  =  ( 𝐴  ↑m  𝑚 ) ) | 
						
							| 59 | 58 | eleq2d | ⊢ ( 𝑛  =  𝑚  →  ( 𝑥  ∈  ( 𝐴  ↑m  𝑛 )  ↔  𝑥  ∈  ( 𝐴  ↑m  𝑚 ) ) ) | 
						
							| 60 | 59 | rspcev | ⊢ ( ( 𝑚  ∈  ω  ∧  𝑥  ∈  ( 𝐴  ↑m  𝑚 ) )  →  ∃ 𝑛  ∈  ω 𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 61 | 46 57 60 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  ∃ 𝑛  ∈  ω 𝑥  ∈  ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 62 | 61 13 | sylibr | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 63 |  | f1ofo | ⊢ ( 𝑥 : 𝑚 –1-1-onto→ 𝑦  →  𝑥 : 𝑚 –onto→ 𝑦 ) | 
						
							| 64 | 63 | ad2antll | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑥 : 𝑚 –onto→ 𝑦 ) | 
						
							| 65 |  | forn | ⊢ ( 𝑥 : 𝑚 –onto→ 𝑦  →  ran  𝑥  =  𝑦 ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  ran  𝑥  =  𝑦 ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  𝑦  =  ran  𝑥 ) | 
						
							| 68 | 62 67 | jca | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  ( 𝑚  ∈  ω  ∧  𝑥 : 𝑚 –1-1-onto→ 𝑦 ) )  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) | 
						
							| 69 | 68 | expr | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑚  ∈  ω )  →  ( 𝑥 : 𝑚 –1-1-onto→ 𝑦  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) ) | 
						
							| 70 | 69 | eximdv | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑚  ∈  ω )  →  ( ∃ 𝑥 𝑥 : 𝑚 –1-1-onto→ 𝑦  →  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) ) | 
						
							| 71 | 45 70 | syl5 | ⊢ ( ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  ∧  𝑚  ∈  ω )  →  ( 𝑦  ≈  𝑚  →  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) ) | 
						
							| 72 | 71 | rexlimdva | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ( ∃ 𝑚  ∈  ω 𝑦  ≈  𝑚  →  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) ) | 
						
							| 73 | 42 72 | mpd | ⊢ ( ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  ∧  𝑦  ∈  ( 𝒫  𝐴  ∩  Fin ) )  →  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) | 
						
							| 74 | 73 | ex | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) ) | 
						
							| 75 |  | eqid | ⊢ ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  =  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) | 
						
							| 76 | 75 | elrnmpt | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  ↔  ∃ 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) 𝑦  =  ran  𝑥 ) ) | 
						
							| 77 | 76 | elv | ⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  ↔  ∃ 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) 𝑦  =  ran  𝑥 ) | 
						
							| 78 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) 𝑦  =  ran  𝑥  ↔  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) | 
						
							| 79 | 77 78 | bitri | ⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  ↔  ∃ 𝑥 ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  𝑦  =  ran  𝑥 ) ) | 
						
							| 80 | 74 79 | imbitrrdi | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑦  ∈  ( 𝒫  𝐴  ∩  Fin )  →  𝑦  ∈  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) ) ) | 
						
							| 81 | 80 | ssrdv | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ⊆  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) ) | 
						
							| 82 | 38 81 | eqssd | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  =  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 83 |  | df-fo | ⊢ ( ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) : ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) –onto→ ( 𝒫  𝐴  ∩  Fin )  ↔  ( ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  Fn  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  ran  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 )  =  ( 𝒫  𝐴  ∩  Fin ) ) ) | 
						
							| 84 | 37 82 83 | sylanbrc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) : ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) –onto→ ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 85 |  | fodomnum | ⊢ ( ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∈  dom  card  →  ( ( 𝑥  ∈  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ↦  ran  𝑥 ) : ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) –onto→ ( 𝒫  𝐴  ∩  Fin )  →  ( 𝒫  𝐴  ∩  Fin )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) ) | 
						
							| 86 | 12 84 85 | sylc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 87 |  | domtr | ⊢ ( ( ( 𝒫  𝐴  ∩  Fin )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∧  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ≼  𝐴 ) | 
						
							| 88 | 86 10 87 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ≼  𝐴 ) | 
						
							| 89 |  | pwexg | ⊢ ( 𝐴  ∈  dom  card  →  𝒫  𝐴  ∈  V ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  𝒫  𝐴  ∈  V ) | 
						
							| 91 |  | inex1g | ⊢ ( 𝒫  𝐴  ∈  V  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ∈  V ) | 
						
							| 93 |  | infpwfidom | ⊢ ( ( 𝒫  𝐴  ∩  Fin )  ∈  V  →  𝐴  ≼  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 94 | 92 93 | syl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  𝐴  ≼  ( 𝒫  𝐴  ∩  Fin ) ) | 
						
							| 95 |  | sbth | ⊢ ( ( ( 𝒫  𝐴  ∩  Fin )  ≼  𝐴  ∧  𝐴  ≼  ( 𝒫  𝐴  ∩  Fin ) )  →  ( 𝒫  𝐴  ∩  Fin )  ≈  𝐴 ) | 
						
							| 96 | 88 94 95 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴 )  →  ( 𝒫  𝐴  ∩  Fin )  ≈  𝐴 ) |