Step |
Hyp |
Ref |
Expression |
1 |
|
ltso |
⊢ < Or ℝ |
2 |
1
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → < Or ℝ ) |
3 |
|
infm3 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑤 < 𝑦 ) ) ) |
4 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) |
5 |
2 3 4
|
infglbb |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) < 𝐵 ↔ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
6 |
5
|
notbid |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
7 |
|
infrecl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) |
8 |
7
|
anim1i |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( inf ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
9 |
8
|
ancomd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) ) |
10 |
|
lenlt |
⊢ ( ( 𝐵 ∈ ℝ ∧ inf ( 𝐴 , ℝ , < ) ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ¬ inf ( 𝐴 , ℝ , < ) < 𝐵 ) ) |
12 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
13 |
|
ssel |
⊢ ( 𝐴 ⊆ ℝ → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
16 |
12 15
|
lenltd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) |
17 |
16
|
ralbidva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ) ) |
18 |
17
|
3ad2antl1 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ) ) |
19 |
|
ralnex |
⊢ ( ∀ 𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) |
20 |
18 19
|
bitrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ¬ ∃ 𝑤 ∈ 𝐴 𝑤 < 𝐵 ) ) |
21 |
6 11 20
|
3bitr4d |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ) ) |
22 |
|
breq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑧 ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 𝐵 ≤ 𝑧 ) |
24 |
21 23
|
bitrdi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐵 ≤ inf ( 𝐴 , ℝ , < ) ↔ ∀ 𝑧 ∈ 𝐴 𝐵 ≤ 𝑧 ) ) |