Metamath Proof Explorer


Theorem infrelb

Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrelb ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → inf ( 𝐵 , ℝ , < ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → 𝐵 ⊆ ℝ )
2 ne0i ( 𝐴𝐵𝐵 ≠ ∅ )
3 2 3ad2ant3 ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → 𝐵 ≠ ∅ )
4 simp2 ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 )
5 infrecl ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ )
6 1 3 4 5 syl3anc ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ )
7 ssel2 ( ( 𝐵 ⊆ ℝ ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ )
8 7 3adant2 ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → 𝐴 ∈ ℝ )
9 ltso < Or ℝ
10 9 a1i ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → < Or ℝ )
11 simpll ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → 𝐵 ⊆ ℝ )
12 2 adantl ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → 𝐵 ≠ ∅ )
13 simplr ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 )
14 infm3 ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧𝐵 𝑧 < 𝑦 ) ) )
15 11 12 13 14 syl3anc ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧𝐵 𝑧 < 𝑦 ) ) )
16 10 15 inflb ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) ∧ 𝐴𝐵 ) → ( 𝐴𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) )
17 16 expcom ( 𝐴𝐵 → ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) → ( 𝐴𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) )
18 17 pm2.43b ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦 ) → ( 𝐴𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) )
19 18 3impia ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) )
20 6 8 19 nltled ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐵 𝑥𝑦𝐴𝐵 ) → inf ( 𝐵 , ℝ , < ) ≤ 𝐴 )