Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ⊆ ℝ ) |
2 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝐵 → 𝐵 ≠ ∅ ) |
3 |
2
|
3ad2ant3 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ≠ ∅ ) |
4 |
|
simp2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
5 |
|
infrecl |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ ) |
6 |
1 3 4 5
|
syl3anc |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → inf ( 𝐵 , ℝ , < ) ∈ ℝ ) |
7 |
|
ssel2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) |
8 |
7
|
3adant2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ℝ ) |
9 |
|
ltso |
⊢ < Or ℝ |
10 |
9
|
a1i |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → < Or ℝ ) |
11 |
|
simpll |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ⊆ ℝ ) |
12 |
2
|
adantl |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → 𝐵 ≠ ∅ ) |
13 |
|
simplr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) |
14 |
|
infm3 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐵 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 < 𝑦 ) ) ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 < 𝑦 ) ) ) |
16 |
10 15
|
inflb |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) |
17 |
16
|
expcom |
⊢ ( 𝐴 ∈ 𝐵 → ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) ) |
18 |
17
|
pm2.43b |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) ) |
19 |
18
|
3impia |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → ¬ 𝐴 < inf ( 𝐵 , ℝ , < ) ) |
20 |
6 8 19
|
nltled |
⊢ ( ( 𝐵 ⊆ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 ∧ 𝐴 ∈ 𝐵 ) → inf ( 𝐵 , ℝ , < ) ≤ 𝐴 ) |