| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infrecl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  inf ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 2 | 1 | recnd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  inf ( 𝐴 ,  ℝ ,   <  )  ∈  ℂ ) | 
						
							| 3 | 2 | negnegd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  - - inf ( 𝐴 ,  ℝ ,   <  )  =  inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 4 |  | negeq | ⊢ ( 𝑤  =  𝑧  →  - 𝑤  =  - 𝑧 ) | 
						
							| 5 | 4 | cbvmptv | ⊢ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  =  ( 𝑧  ∈  ℝ  ↦  - 𝑧 ) | 
						
							| 6 | 5 | mptpreima | ⊢ ( ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 )  =  { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } | 
						
							| 7 |  | eqid | ⊢ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  =  ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) | 
						
							| 8 | 7 | negiso | ⊢ ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom   <  ,  ◡  <  ( ℝ ,  ℝ )  ∧  ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  =  ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ) | 
						
							| 9 | 8 | simpri | ⊢ ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  =  ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) | 
						
							| 10 | 9 | imaeq1i | ⊢ ( ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 )  =  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 ) | 
						
							| 11 | 6 10 | eqtr3i | ⊢ { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 }  =  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 ) | 
						
							| 12 | 11 | supeq1i | ⊢ sup ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  sup ( ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 ) ,  ℝ ,   <  ) | 
						
							| 13 | 8 | simpli | ⊢ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom   <  ,  ◡  <  ( ℝ ,  ℝ ) | 
						
							| 14 |  | isocnv | ⊢ ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom   <  ,  ◡  <  ( ℝ ,  ℝ )  →  ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) | 
						
							| 16 |  | isoeq1 | ⊢ ( ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  =  ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  →  ( ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ )  ↔  ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) ) ) | 
						
							| 17 | 9 16 | ax-mp | ⊢ ( ◡ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ )  ↔  ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) ) | 
						
							| 18 | 15 17 | mpbi | ⊢ ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  Isom  ◡  <  ,   <  ( ℝ ,  ℝ ) ) | 
						
							| 20 |  | simp1 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  𝐴  ⊆  ℝ ) | 
						
							| 21 |  | infm3 | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 22 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 | 22 23 | brcnv | ⊢ ( 𝑥 ◡  <  𝑦  ↔  𝑦  <  𝑥 ) | 
						
							| 25 | 24 | notbii | ⊢ ( ¬  𝑥 ◡  <  𝑦  ↔  ¬  𝑦  <  𝑥 ) | 
						
							| 26 | 25 | ralbii | ⊢ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ↔  ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥 ) | 
						
							| 27 | 23 22 | brcnv | ⊢ ( 𝑦 ◡  <  𝑥  ↔  𝑥  <  𝑦 ) | 
						
							| 28 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 29 | 23 28 | brcnv | ⊢ ( 𝑦 ◡  <  𝑧  ↔  𝑧  <  𝑦 ) | 
						
							| 30 | 29 | rexbii | ⊢ ( ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧  ↔  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) | 
						
							| 31 | 27 30 | imbi12i | ⊢ ( ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 )  ↔  ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) | 
						
							| 32 | 31 | ralbii | ⊢ ( ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 )  ↔  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) | 
						
							| 33 | 26 32 | anbi12i | ⊢ ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 34 | 33 | rexbii | ⊢ ( ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) )  ↔  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) ) ) | 
						
							| 35 | 21 34 | sylibr | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ∃ 𝑥  ∈  ℝ ( ∀ 𝑦  ∈  𝐴 ¬  𝑥 ◡  <  𝑦  ∧  ∀ 𝑦  ∈  ℝ ( 𝑦 ◡  <  𝑥  →  ∃ 𝑧  ∈  𝐴 𝑦 ◡  <  𝑧 ) ) ) | 
						
							| 36 |  | gtso | ⊢ ◡  <   Or  ℝ | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ◡  <   Or  ℝ ) | 
						
							| 38 | 19 20 35 37 | supiso | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  sup ( ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 )  “  𝐴 ) ,  ℝ ,   <  )  =  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ sup ( 𝐴 ,  ℝ ,  ◡  <  ) ) ) | 
						
							| 39 | 12 38 | eqtrid | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  sup ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  )  =  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ sup ( 𝐴 ,  ℝ ,  ◡  <  ) ) ) | 
						
							| 40 |  | df-inf | ⊢ inf ( 𝐴 ,  ℝ ,   <  )  =  sup ( 𝐴 ,  ℝ ,  ◡  <  ) | 
						
							| 41 | 40 | eqcomi | ⊢ sup ( 𝐴 ,  ℝ ,  ◡  <  )  =  inf ( 𝐴 ,  ℝ ,   <  ) | 
						
							| 42 | 41 | fveq2i | ⊢ ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ sup ( 𝐴 ,  ℝ ,  ◡  <  ) )  =  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 43 |  | negeq | ⊢ ( 𝑤  =  inf ( 𝐴 ,  ℝ ,   <  )  →  - 𝑤  =  - inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 44 |  | negex | ⊢ - inf ( 𝐴 ,  ℝ ,   <  )  ∈  V | 
						
							| 45 | 43 7 44 | fvmpt | ⊢ ( inf ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ  →  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ inf ( 𝐴 ,  ℝ ,   <  ) )  =  - inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 46 | 42 45 | eqtrid | ⊢ ( inf ( 𝐴 ,  ℝ ,   <  )  ∈  ℝ  →  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ sup ( 𝐴 ,  ℝ ,  ◡  <  ) )  =  - inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 47 | 1 46 | syl | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  ( ( 𝑤  ∈  ℝ  ↦  - 𝑤 ) ‘ sup ( 𝐴 ,  ℝ ,  ◡  <  ) )  =  - inf ( 𝐴 ,  ℝ ,   <  ) ) | 
						
							| 48 | 39 47 | eqtr2d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  - inf ( 𝐴 ,  ℝ ,   <  )  =  sup ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 49 | 48 | negeqd | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  - - inf ( 𝐴 ,  ℝ ,   <  )  =  - sup ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) | 
						
							| 50 | 3 49 | eqtr3d | ⊢ ( ( 𝐴  ⊆  ℝ  ∧  𝐴  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝑥  ≤  𝑦 )  →  inf ( 𝐴 ,  ℝ ,   <  )  =  - sup ( { 𝑧  ∈  ℝ  ∣  - 𝑧  ∈  𝐴 } ,  ℝ ,   <  ) ) |