Step |
Hyp |
Ref |
Expression |
1 |
|
infrnmptle.x |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
infrnmptle.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
3 |
|
infrnmptle.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
4 |
|
infrnmptle.l |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
5 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
6 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
7 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
8 |
1 7 2
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⊆ ℝ* ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
10 |
1 9 3
|
rnmptssd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⊆ ℝ* ) |
11 |
|
vex |
⊢ 𝑦 ∈ V |
12 |
9
|
elrnmpt |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) ) |
13 |
11 12
|
ax-mp |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
14 |
13
|
biimpi |
⊢ ( 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) → ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 ) |
16 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
17 |
16
|
nfrn |
⊢ Ⅎ 𝑥 ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
18 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ≤ 𝑦 |
19 |
17 18
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
21 |
7
|
elrnmpt1 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
22 |
20 2 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
24 |
4
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐵 ≤ 𝐶 ) |
25 |
|
id |
⊢ ( 𝑦 = 𝐶 → 𝑦 = 𝐶 ) |
26 |
25
|
eqcomd |
⊢ ( 𝑦 = 𝐶 → 𝐶 = 𝑦 ) |
27 |
26
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐶 = 𝑦 ) |
28 |
24 27
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → 𝐵 ≤ 𝑦 ) |
29 |
|
breq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ≤ 𝑦 ↔ 𝐵 ≤ 𝑦 ) ) |
30 |
29
|
rspcev |
⊢ ( ( 𝐵 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∧ 𝐵 ≤ 𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
31 |
23 28 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
32 |
31
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) ) |
33 |
1 19 32
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) ) |
35 |
15 34
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) → ∃ 𝑧 ∈ ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) 𝑧 ≤ 𝑦 ) |
36 |
5 6 8 10 35
|
infleinf2 |
⊢ ( 𝜑 → inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) , ℝ* , < ) ≤ inf ( ran ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) , ℝ* , < ) ) |