Metamath Proof Explorer


Theorem infrnmptle

Description: An indexed infimum of extended reals is smaller than another indexed infimum of extended reals, when every indexed element is smaller than the corresponding one. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses infrnmptle.x 𝑥 𝜑
infrnmptle.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
infrnmptle.c ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
infrnmptle.l ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
Assertion infrnmptle ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ inf ( ran ( 𝑥𝐴𝐶 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 infrnmptle.x 𝑥 𝜑
2 infrnmptle.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ* )
3 infrnmptle.c ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℝ* )
4 infrnmptle.l ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
5 nfv 𝑦 𝜑
6 nfv 𝑧 𝜑
7 eqid ( 𝑥𝐴𝐵 ) = ( 𝑥𝐴𝐵 )
8 1 7 2 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐵 ) ⊆ ℝ* )
9 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
10 1 9 3 rnmptssd ( 𝜑 → ran ( 𝑥𝐴𝐶 ) ⊆ ℝ* )
11 vex 𝑦 ∈ V
12 9 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥𝐴𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 = 𝐶 ) )
13 11 12 ax-mp ( 𝑦 ∈ ran ( 𝑥𝐴𝐶 ) ↔ ∃ 𝑥𝐴 𝑦 = 𝐶 )
14 13 biimpi ( 𝑦 ∈ ran ( 𝑥𝐴𝐶 ) → ∃ 𝑥𝐴 𝑦 = 𝐶 )
15 14 adantl ( ( 𝜑𝑦 ∈ ran ( 𝑥𝐴𝐶 ) ) → ∃ 𝑥𝐴 𝑦 = 𝐶 )
16 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
17 16 nfrn 𝑥 ran ( 𝑥𝐴𝐵 )
18 nfv 𝑥 𝑧𝑦
19 17 18 nfrex 𝑥𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦
20 simpr ( ( 𝜑𝑥𝐴 ) → 𝑥𝐴 )
21 7 elrnmpt1 ( ( 𝑥𝐴𝐵 ∈ ℝ* ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
22 20 2 21 syl2anc ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
23 22 3adant3 ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) )
24 4 3adant3 ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → 𝐵𝐶 )
25 id ( 𝑦 = 𝐶𝑦 = 𝐶 )
26 25 eqcomd ( 𝑦 = 𝐶𝐶 = 𝑦 )
27 26 3ad2ant3 ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → 𝐶 = 𝑦 )
28 24 27 breqtrd ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → 𝐵𝑦 )
29 breq1 ( 𝑧 = 𝐵 → ( 𝑧𝑦𝐵𝑦 ) )
30 29 rspcev ( ( 𝐵 ∈ ran ( 𝑥𝐴𝐵 ) ∧ 𝐵𝑦 ) → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
31 23 28 30 syl2anc ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
32 31 3exp ( 𝜑 → ( 𝑥𝐴 → ( 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) ) )
33 1 19 32 rexlimd ( 𝜑 → ( ∃ 𝑥𝐴 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
34 33 adantr ( ( 𝜑𝑦 ∈ ran ( 𝑥𝐴𝐶 ) ) → ( ∃ 𝑥𝐴 𝑦 = 𝐶 → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 ) )
35 15 34 mpd ( ( 𝜑𝑦 ∈ ran ( 𝑥𝐴𝐶 ) ) → ∃ 𝑧 ∈ ran ( 𝑥𝐴𝐵 ) 𝑧𝑦 )
36 5 6 8 10 35 infleinf2 ( 𝜑 → inf ( ran ( 𝑥𝐴𝐵 ) , ℝ* , < ) ≤ inf ( ran ( 𝑥𝐴𝐶 ) , ℝ* , < ) )