| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							infrnmptle.x | 
							⊢ Ⅎ 𝑥 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							infrnmptle.b | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 3 | 
							
								
							 | 
							infrnmptle.c | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							infrnmptle.l | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ≤  𝐶 )  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 6 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 𝜑  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 8 | 
							
								1 7 2
							 | 
							rnmptssd | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ* )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 )  | 
						
						
							| 10 | 
							
								1 9 3
							 | 
							rnmptssd | 
							⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ⊆  ℝ* )  | 
						
						
							| 11 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 12 | 
							
								9
							 | 
							elrnmpt | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							ax-mp | 
							⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ↔  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  | 
						
						
							| 14 | 
							
								13
							 | 
							biimpi | 
							⊢ ( 𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  →  ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶 )  | 
						
						
							| 16 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑥 ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 17 | 
							
								16
							 | 
							nfrn | 
							⊢ Ⅎ 𝑥 ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝑧  ≤  𝑦  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nfrexw | 
							⊢ Ⅎ 𝑥 ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦  | 
						
						
							| 20 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								7
							 | 
							elrnmpt1 | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐵  ∈  ℝ* )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 22 | 
							
								20 2 21
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) )  | 
						
						
							| 24 | 
							
								4
							 | 
							3adant3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝐵  ≤  𝐶 )  | 
						
						
							| 25 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  𝐶  →  𝑦  =  𝐶 )  | 
						
						
							| 26 | 
							
								25
							 | 
							eqcomd | 
							⊢ ( 𝑦  =  𝐶  →  𝐶  =  𝑦 )  | 
						
						
							| 27 | 
							
								26
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝐶  =  𝑦 )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							breqtrd | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  𝐵  ≤  𝑦 )  | 
						
						
							| 29 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ≤  𝑦  ↔  𝐵  ≤  𝑦 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							rspcev | 
							⊢ ( ( 𝐵  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∧  𝐵  ≤  𝑦 )  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 31 | 
							
								23 28 30
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴  ∧  𝑦  =  𝐶 )  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 32 | 
							
								31
							 | 
							3exp | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( 𝑦  =  𝐶  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) ) )  | 
						
						
							| 33 | 
							
								1 19 32
							 | 
							rexlimd | 
							⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  𝐶  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 ) )  | 
						
						
							| 35 | 
							
								15 34
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  →  ∃ 𝑧  ∈  ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) 𝑧  ≤  𝑦 )  | 
						
						
							| 36 | 
							
								5 6 8 10 35
							 | 
							infleinf2 | 
							⊢ ( 𝜑  →  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐵 ) ,  ℝ* ,   <  )  ≤  inf ( ran  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ,  ℝ* ,   <  ) )  |