Step |
Hyp |
Ref |
Expression |
1 |
|
infrpge.xph |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
infrpge.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ* ) |
3 |
|
infrpge.an0 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
4 |
|
infrpge.bnd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
5 |
|
infrpge.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
6 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
7 |
6
|
biimpi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 𝑧 ∈ 𝐴 ) |
10 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) |
11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝐴 ⊆ ℝ* ) |
13 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) |
14 |
12 13
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ* ) |
15 |
|
pnfge |
⊢ ( 𝑧 ∈ ℝ* → 𝑧 ≤ +∞ ) |
16 |
14 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ +∞ ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ +∞ ) |
18 |
|
oveq1 |
⊢ ( inf ( 𝐴 , ℝ* , < ) = +∞ → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) |
20 |
5
|
rpxrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
21 |
5
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
22 |
|
renemnf |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ -∞ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ -∞ ) |
24 |
|
xaddpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) |
25 |
20 23 24
|
syl2anc |
⊢ ( 𝜑 → ( +∞ +𝑒 𝐵 ) = +∞ ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) |
27 |
19 26
|
eqtr2d |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → +∞ = ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → +∞ = ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
29 |
17 28
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
30 |
11 29
|
jca |
⊢ ( ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
31 |
30
|
ex |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( 𝑧 ∈ 𝐴 → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) ) |
32 |
10 31
|
eximd |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( ∃ 𝑧 𝑧 ∈ 𝐴 → ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) ) |
33 |
9 32
|
mpd |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
34 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
35 |
33 34
|
sylibr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
36 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → 𝜑 ) |
37 |
|
nfv |
⊢ Ⅎ 𝑥 -∞ < inf ( 𝐴 , ℝ* , < ) |
38 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
39 |
38
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ ∈ ℝ* ) |
40 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
41 |
40
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝑥 ∈ ℝ* ) |
42 |
|
infxrcl |
⊢ ( 𝐴 ⊆ ℝ* → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
43 |
2 42
|
syl |
⊢ ( 𝜑 → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
45 |
|
mnflt |
⊢ ( 𝑥 ∈ ℝ → -∞ < 𝑥 ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < 𝑥 ) |
47 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
48 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝐴 ⊆ ℝ* ) |
49 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
50 |
|
infxrgelb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑥 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
51 |
48 49 50
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
52 |
51
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑥 ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
53 |
47 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝑥 ≤ inf ( 𝐴 , ℝ* , < ) ) |
54 |
39 41 44 46 53
|
xrltletrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
55 |
54
|
3exp |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → -∞ < inf ( 𝐴 , ℝ* , < ) ) ) ) |
56 |
1 37 55
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → -∞ < inf ( 𝐴 , ℝ* , < ) ) ) |
57 |
4 56
|
mpd |
⊢ ( 𝜑 → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → -∞ < inf ( 𝐴 , ℝ* , < ) ) |
59 |
|
neqne |
⊢ ( ¬ inf ( 𝐴 , ℝ* , < ) = +∞ → inf ( 𝐴 , ℝ* , < ) ≠ +∞ ) |
60 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → inf ( 𝐴 , ℝ* , < ) ≠ +∞ ) |
61 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
62 |
60 61
|
nepnfltpnf |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → inf ( 𝐴 , ℝ* , < ) < +∞ ) |
63 |
58 62
|
jca |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) < +∞ ) ) |
64 |
|
xrrebnd |
⊢ ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* → ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) < +∞ ) ) ) |
65 |
43 64
|
syl |
⊢ ( 𝜑 → ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) < +∞ ) ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < inf ( 𝐴 , ℝ* , < ) ∧ inf ( 𝐴 , ℝ* , < ) < +∞ ) ) ) |
67 |
63 66
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
68 |
|
simpr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) |
69 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → 𝐵 ∈ ℝ+ ) |
70 |
68 69
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) < ( inf ( 𝐴 , ℝ* , < ) + 𝐵 ) ) |
71 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → 𝐵 ∈ ℝ ) |
72 |
|
rexadd |
⊢ ( ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) = ( inf ( 𝐴 , ℝ* , < ) + 𝐵 ) ) |
73 |
68 71 72
|
syl2anc |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) = ( inf ( 𝐴 , ℝ* , < ) + 𝐵 ) ) |
74 |
73
|
eqcomd |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) + 𝐵 ) = ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
75 |
70 74
|
breqtrd |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
76 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ) |
77 |
43 20
|
xaddcld |
⊢ ( 𝜑 → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) |
79 |
|
xrltnle |
⊢ ( ( inf ( 𝐴 , ℝ* , < ) ∈ ℝ* ∧ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) → ( inf ( 𝐴 , ℝ* , < ) < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ↔ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) ) |
80 |
76 78 79
|
syl2anc |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ( inf ( 𝐴 , ℝ* , < ) < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ↔ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) ) |
81 |
75 80
|
mpbid |
⊢ ( ( 𝜑 ∧ inf ( 𝐴 , ℝ* , < ) ∈ ℝ ) → ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
82 |
36 67 81
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) → ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) |
84 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) → 𝜑 ) |
85 |
|
infxrgelb |
⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) → ( ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝐴 ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) ) |
86 |
2 77 85
|
syl2anc |
⊢ ( 𝜑 → ( ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝐴 ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) ) |
87 |
84 86
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) → ( ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝐴 ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) ) |
88 |
83 87
|
mtbid |
⊢ ( ( 𝜑 ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) → ¬ ∀ 𝑧 ∈ 𝐴 ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) |
89 |
|
rexnal |
⊢ ( ∃ 𝑧 ∈ 𝐴 ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ↔ ¬ ∀ 𝑧 ∈ 𝐴 ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) |
90 |
88 89
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ inf ( 𝐴 , ℝ* , < ) ) → ∃ 𝑧 ∈ 𝐴 ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) |
91 |
36 82 90
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ 𝐴 ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) |
92 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → 𝑧 ∈ ℝ* ) |
93 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) |
94 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) |
95 |
|
xrltnle |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ∈ ℝ* ) → ( 𝑧 < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ↔ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) ) |
96 |
92 93 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → ( 𝑧 < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ↔ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) ) |
97 |
94 96
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → 𝑧 < ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
98 |
92 93 97
|
xrltled |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) ∧ ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 ) → 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
99 |
98
|
ex |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 → 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
100 |
99
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 → 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
101 |
100
|
reximdva |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ( ∃ 𝑧 ∈ 𝐴 ¬ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ≤ 𝑧 → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) ) |
102 |
91 101
|
mpd |
⊢ ( ( 𝜑 ∧ ¬ inf ( 𝐴 , ℝ* , < ) = +∞ ) → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |
103 |
35 102
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐴 𝑧 ≤ ( inf ( 𝐴 , ℝ* , < ) +𝑒 𝐵 ) ) |