Metamath Proof Explorer


Theorem infsdomnn

Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)

Ref Expression
Assertion infsdomnn ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 nnfi ( 𝐵 ∈ ω → 𝐵 ∈ Fin )
2 1 adantl ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵 ∈ Fin )
3 reldom Rel ≼
4 3 brrelex1i ( ω ≼ 𝐴 → ω ∈ V )
5 nnsdomg ( ( ω ∈ V ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω )
6 4 5 sylan ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵 ≺ ω )
7 simpl ( ( ω ≼ 𝐴𝐵 ∈ ω ) → ω ≼ 𝐴 )
8 sdomdomtrfi ( ( 𝐵 ∈ Fin ∧ 𝐵 ≺ ω ∧ ω ≼ 𝐴 ) → 𝐵𝐴 )
9 2 6 7 8 syl3anc ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵𝐴 )