Metamath Proof Explorer


Theorem infsdomnn

Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion infsdomnn ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 reldom Rel ≼
2 1 brrelex1i ( ω ≼ 𝐴 → ω ∈ V )
3 nnsdomg ( ( ω ∈ V ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω )
4 2 3 sylan ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵 ≺ ω )
5 simpl ( ( ω ≼ 𝐴𝐵 ∈ ω ) → ω ≼ 𝐴 )
6 sdomdomtr ( ( 𝐵 ≺ ω ∧ ω ≼ 𝐴 ) → 𝐵𝐴 )
7 4 5 6 syl2anc ( ( ω ≼ 𝐴𝐵 ∈ ω ) → 𝐵𝐴 )