Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infsdomnn | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom | ⊢ Rel ≼ | |
2 | 1 | brrelex1i | ⊢ ( ω ≼ 𝐴 → ω ∈ V ) |
3 | nnsdomg | ⊢ ( ( ω ∈ V ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω ) | |
4 | 2 3 | sylan | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω ) |
5 | simpl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → ω ≼ 𝐴 ) | |
6 | sdomdomtr | ⊢ ( ( 𝐵 ≺ ω ∧ ω ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
7 | 4 5 6 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ 𝐴 ) |