Description: Obsolete version of infsdomnn as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infsdomnnOLD | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i | ⊢ ( ω ≼ 𝐴 → ω ∈ V ) | 
| 3 | nnsdomg | ⊢ ( ( ω ∈ V ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω ) | |
| 4 | 2 3 | sylan | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ ω ) | 
| 5 | simpl | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → ω ≼ 𝐴 ) | |
| 6 | sdomdomtr | ⊢ ( ( 𝐵 ≺ ω ∧ ω ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐵 ∈ ω ) → 𝐵 ≺ 𝐴 ) |