| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							infssd.0 | 
							⊢ ( 𝜑  →  𝑅  Or  𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							infssd.1 | 
							⊢ ( 𝜑  →  𝐶  ⊆  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							infssd.3 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐶 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐶 𝑧 𝑅 𝑦 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							infssd.4 | 
							⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							infcl | 
							⊢ ( 𝜑  →  inf ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  𝐴 )  | 
						
						
							| 6 | 
							
								2
							 | 
							sseld | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐶  →  𝑧  ∈  𝐵 ) )  | 
						
						
							| 7 | 
							
								1 4
							 | 
							inflb | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐵  →  ¬  𝑧 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syld | 
							⊢ ( 𝜑  →  ( 𝑧  ∈  𝐶  →  ¬  𝑧 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ralrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐶 ¬  𝑧 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 10 | 
							
								1 3
							 | 
							infnlb | 
							⊢ ( 𝜑  →  ( ( inf ( 𝐵 ,  𝐴 ,  𝑅 )  ∈  𝐴  ∧  ∀ 𝑧  ∈  𝐶 ¬  𝑧 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) )  →  ¬  inf ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 11 | 
							
								5 9 10
							 | 
							mp2and | 
							⊢ ( 𝜑  →  ¬  inf ( 𝐶 ,  𝐴 ,  𝑅 ) 𝑅 inf ( 𝐵 ,  𝐴 ,  𝑅 ) )  |