Metamath Proof Explorer


Theorem infssuzle

Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzle ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 ne0i ( 𝐴𝑆𝑆 ≠ ∅ )
2 uzwo ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 )
3 1 2 sylan2 ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝐴𝑆 ) → ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 )
4 uzssz ( ℤ𝑀 ) ⊆ ℤ
5 zssre ℤ ⊆ ℝ
6 4 5 sstri ( ℤ𝑀 ) ⊆ ℝ
7 sstr ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ ( ℤ𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ )
8 6 7 mpan2 ( 𝑆 ⊆ ( ℤ𝑀 ) → 𝑆 ⊆ ℝ )
9 lbinfle ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )
10 9 3com23 ( ( 𝑆 ⊆ ℝ ∧ 𝐴𝑆 ∧ ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )
11 8 10 syl3an1 ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝐴𝑆 ∧ ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )
12 3 11 mpd3an3 ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝐴𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 )