| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑆 → 𝑆 ≠ ∅ ) |
| 2 |
|
uzwo |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| 4 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 5 |
|
zssre |
⊢ ℤ ⊆ ℝ |
| 6 |
4 5
|
sstri |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 7 |
|
sstr |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ ) |
| 8 |
6 7
|
mpan2 |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → 𝑆 ⊆ ℝ ) |
| 9 |
|
lbinfle |
⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ∧ 𝐴 ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| 10 |
9
|
3com23 |
⊢ ( ( 𝑆 ⊆ ℝ ∧ 𝐴 ∈ 𝑆 ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| 11 |
8 10
|
syl3an1 |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |
| 12 |
3 11
|
mpd3an3 |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐴 ∈ 𝑆 ) → inf ( 𝑆 , ℝ , < ) ≤ 𝐴 ) |