Metamath Proof Explorer


Theorem infunabs

Description: An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infunabs ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ∈ dom card )
2 reldom Rel ≼
3 2 brrelex1i ( 𝐵𝐴𝐵 ∈ V )
4 3 3ad2ant3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐵 ∈ V )
5 undjudom ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
6 1 4 5 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) )
7 infdjuabs ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )
8 domentr ( ( ( 𝐴𝐵 ) ≼ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ≈ 𝐴 ) → ( 𝐴𝐵 ) ≼ 𝐴 )
9 6 7 8 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≼ 𝐴 )
10 unexg ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
11 1 4 10 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ∈ V )
12 ssun1 𝐴 ⊆ ( 𝐴𝐵 )
13 ssdomg ( ( 𝐴𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴𝐵 ) → 𝐴 ≼ ( 𝐴𝐵 ) ) )
14 11 12 13 mpisyl ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → 𝐴 ≼ ( 𝐴𝐵 ) )
15 sbth ( ( ( 𝐴𝐵 ) ≼ 𝐴𝐴 ≼ ( 𝐴𝐵 ) ) → ( 𝐴𝐵 ) ≈ 𝐴 )
16 9 14 15 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) ≈ 𝐴 )