| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐴  ∈  dom  card ) | 
						
							| 2 |  | reldom | ⊢ Rel   ≼ | 
						
							| 3 | 2 | brrelex1i | ⊢ ( 𝐵  ≼  𝐴  →  𝐵  ∈  V ) | 
						
							| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐵  ∈  V ) | 
						
							| 5 |  | undjudom | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  ∈  V )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 6 | 1 4 5 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 ) ) | 
						
							| 7 |  | infdjuabs | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ⊔  𝐵 )  ≈  𝐴 ) | 
						
							| 8 |  | domentr | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ≼  ( 𝐴  ⊔  𝐵 )  ∧  ( 𝐴  ⊔  𝐵 )  ≈  𝐴 )  →  ( 𝐴  ∪  𝐵 )  ≼  𝐴 ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ∪  𝐵 )  ≼  𝐴 ) | 
						
							| 10 |  | unexg | ⊢ ( ( 𝐴  ∈  dom  card  ∧  𝐵  ∈  V )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 11 | 1 4 10 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ∪  𝐵 )  ∈  V ) | 
						
							| 12 |  | ssun1 | ⊢ 𝐴  ⊆  ( 𝐴  ∪  𝐵 ) | 
						
							| 13 |  | ssdomg | ⊢ ( ( 𝐴  ∪  𝐵 )  ∈  V  →  ( 𝐴  ⊆  ( 𝐴  ∪  𝐵 )  →  𝐴  ≼  ( 𝐴  ∪  𝐵 ) ) ) | 
						
							| 14 | 11 12 13 | mpisyl | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  𝐴  ≼  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 15 |  | sbth | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ≼  𝐴  ∧  𝐴  ≼  ( 𝐴  ∪  𝐵 ) )  →  ( 𝐴  ∪  𝐵 )  ≈  𝐴 ) | 
						
							| 16 | 9 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  card  ∧  ω  ≼  𝐴  ∧  𝐵  ≼  𝐴 )  →  ( 𝐴  ∪  𝐵 )  ≈  𝐴 ) |