Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ dom card ) |
2 |
|
reldom |
⊢ Rel ≼ |
3 |
2
|
brrelex1i |
⊢ ( 𝐵 ≼ 𝐴 → 𝐵 ∈ V ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ V ) |
5 |
|
undjudom |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
6 |
1 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ) |
7 |
|
infdjuabs |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) |
8 |
|
domentr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ ( 𝐴 ⊔ 𝐵 ) ∧ ( 𝐴 ⊔ 𝐵 ) ≈ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ) |
10 |
|
unexg |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ V ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
11 |
1 4 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
12 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
13 |
|
ssdomg |
⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ V → ( 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) ) |
14 |
11 12 13
|
mpisyl |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) |
15 |
|
sbth |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |
16 |
9 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐴 ) |