| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵 ) |
| 2 |
|
infunsdom1 |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 3 |
2
|
anass1rs |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝐵 ≺ 𝑋 ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 4 |
3
|
adantlrl |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 5 |
1 4
|
sylan2 |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐴 ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 6 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝑋 ∈ dom card ) |
| 7 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋 ) |
| 8 |
7
|
ad2antll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ≼ 𝑋 ) |
| 9 |
|
numdom |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋 ) → 𝐵 ∈ dom card ) |
| 10 |
6 8 9
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ∈ dom card ) |
| 11 |
|
sdomdom |
⊢ ( 𝐴 ≺ 𝑋 → 𝐴 ≼ 𝑋 ) |
| 12 |
11
|
ad2antrl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ≼ 𝑋 ) |
| 13 |
|
numdom |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐴 ≼ 𝑋 ) → 𝐴 ∈ dom card ) |
| 14 |
6 12 13
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ∈ dom card ) |
| 15 |
|
domtri2 |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ dom card ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 16 |
10 14 15
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐵 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝐵 ) ) |
| 17 |
16
|
biimpar |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐴 ≺ 𝐵 ) → 𝐵 ≼ 𝐴 ) |
| 18 |
|
uncom |
⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) |
| 19 |
|
infunsdom1 |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋 ) ) → ( 𝐵 ∪ 𝐴 ) ≺ 𝑋 ) |
| 20 |
18 19
|
eqbrtrid |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐵 ≼ 𝐴 ∧ 𝐴 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 21 |
20
|
anass1rs |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝐴 ≺ 𝑋 ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 22 |
21
|
adantlrr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 23 |
17 22
|
syldan |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐴 ≺ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
| 24 |
5 23
|
pm2.61dan |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |