Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐴 ≼ 𝐵 ) |
2 |
|
domsdomtr |
⊢ ( ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ ω ) → 𝐴 ≺ ω ) |
3 |
1 2
|
sylan |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → 𝐴 ≺ ω ) |
4 |
|
unfi2 |
⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) |
5 |
3 4
|
sylancom |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ ω ) |
6 |
|
simpllr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ω ≼ 𝑋 ) |
7 |
|
sdomdomtr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≺ ω ∧ ω ≼ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
8 |
5 6 7
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
9 |
|
omelon |
⊢ ω ∈ On |
10 |
|
onenon |
⊢ ( ω ∈ On → ω ∈ dom card ) |
11 |
9 10
|
ax-mp |
⊢ ω ∈ dom card |
12 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝑋 ∈ dom card ) |
13 |
|
sdomdom |
⊢ ( 𝐵 ≺ 𝑋 → 𝐵 ≼ 𝑋 ) |
14 |
13
|
ad2antll |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ≼ 𝑋 ) |
15 |
|
numdom |
⊢ ( ( 𝑋 ∈ dom card ∧ 𝐵 ≼ 𝑋 ) → 𝐵 ∈ dom card ) |
16 |
12 14 15
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → 𝐵 ∈ dom card ) |
17 |
|
domtri2 |
⊢ ( ( ω ∈ dom card ∧ 𝐵 ∈ dom card ) → ( ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω ) ) |
18 |
11 16 17
|
sylancr |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( ω ≼ 𝐵 ↔ ¬ 𝐵 ≺ ω ) ) |
19 |
18
|
biimpar |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐵 ≺ ω ) → ω ≼ 𝐵 ) |
20 |
|
uncom |
⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) |
21 |
16
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐵 ∈ dom card ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ω ≼ 𝐵 ) |
23 |
1
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
24 |
|
infunabs |
⊢ ( ( 𝐵 ∈ dom card ∧ ω ≼ 𝐵 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) |
25 |
21 22 23 24
|
syl3anc |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐵 ∪ 𝐴 ) ≈ 𝐵 ) |
26 |
20 25
|
eqbrtrid |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ) |
27 |
|
simplrr |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → 𝐵 ≺ 𝑋 ) |
28 |
|
ensdomtr |
⊢ ( ( ( 𝐴 ∪ 𝐵 ) ≈ 𝐵 ∧ 𝐵 ≺ 𝑋 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ω ≼ 𝐵 ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
30 |
19 29
|
syldan |
⊢ ( ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) ∧ ¬ 𝐵 ≺ ω ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |
31 |
8 30
|
pm2.61dan |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋 ) ) → ( 𝐴 ∪ 𝐵 ) ≺ 𝑋 ) |