Step |
Hyp |
Ref |
Expression |
1 |
|
infexd.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
2 |
|
df-inf |
⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) |
3 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
5 |
4
|
supval2 |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
6 7
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
10 |
9
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ) ) |
12 |
7 6
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
14 |
|
vex |
⊢ 𝑧 ∈ V |
15 |
7 14
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) ) |
17 |
16
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ↔ ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) |
18 |
13 17
|
imbi12d |
⊢ ( 𝜑 → ( ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
19 |
18
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
20 |
11 19
|
anbi12d |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
21 |
20
|
riotabidv |
⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
22 |
5 21
|
eqtrd |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |
23 |
2 22
|
eqtrid |
⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) ) |