| Step | Hyp | Ref | Expression | 
						
							| 1 |  | infexd.1 | ⊢ ( 𝜑  →  𝑅  Or  𝐴 ) | 
						
							| 2 |  | df-inf | ⊢ inf ( 𝐵 ,  𝐴 ,  𝑅 )  =  sup ( 𝐵 ,  𝐴 ,  ◡ 𝑅 ) | 
						
							| 3 |  | cnvso | ⊢ ( 𝑅  Or  𝐴  ↔  ◡ 𝑅  Or  𝐴 ) | 
						
							| 4 | 1 3 | sylib | ⊢ ( 𝜑  →  ◡ 𝑅  Or  𝐴 ) | 
						
							| 5 | 4 | supval2 | ⊢ ( 𝜑  →  sup ( 𝐵 ,  𝐴 ,  ◡ 𝑅 )  =  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 ◡ 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 8 | 6 7 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 ) | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  ( 𝑥 ◡ 𝑅 𝑦  ↔  𝑦 𝑅 𝑥 ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( 𝜑  →  ( ¬  𝑥 ◡ 𝑅 𝑦  ↔  ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 ◡ 𝑅 𝑦  ↔  ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥 ) ) | 
						
							| 12 | 7 6 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥  ↔  𝑥 𝑅 𝑦 ) | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( 𝑦 ◡ 𝑅 𝑥  ↔  𝑥 𝑅 𝑦 ) ) | 
						
							| 14 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 15 | 7 14 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑧  ↔  𝑧 𝑅 𝑦 ) | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ( 𝑦 ◡ 𝑅 𝑧  ↔  𝑧 𝑅 𝑦 ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧  ↔  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) | 
						
							| 18 | 13 17 | imbi12d | ⊢ ( 𝜑  →  ( ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧 )  ↔  ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) | 
						
							| 19 | 18 | ralbidv | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐴 ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧 )  ↔  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) | 
						
							| 20 | 11 19 | anbi12d | ⊢ ( 𝜑  →  ( ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 ◡ 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧 ) )  ↔  ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 21 | 20 | riotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑥 ◡ 𝑅 𝑦  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑦 ◡ 𝑅 𝑥  →  ∃ 𝑧  ∈  𝐵 𝑦 ◡ 𝑅 𝑧 ) ) )  =  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 22 | 5 21 | eqtrd | ⊢ ( 𝜑  →  sup ( 𝐵 ,  𝐴 ,  ◡ 𝑅 )  =  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) ) | 
						
							| 23 | 2 22 | eqtrid | ⊢ ( 𝜑  →  inf ( 𝐵 ,  𝐴 ,  𝑅 )  =  ( ℩ 𝑥  ∈  𝐴 ( ∀ 𝑦  ∈  𝐵 ¬  𝑦 𝑅 𝑥  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑥 𝑅 𝑦  →  ∃ 𝑧  ∈  𝐵 𝑧 𝑅 𝑦 ) ) ) ) |