Metamath Proof Explorer


Theorem infval

Description: Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infexd.1 ( 𝜑𝑅 Or 𝐴 )
Assertion infval ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) ) )

Proof

Step Hyp Ref Expression
1 infexd.1 ( 𝜑𝑅 Or 𝐴 )
2 df-inf inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 )
3 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
4 1 3 sylib ( 𝜑 𝑅 Or 𝐴 )
5 4 supval2 ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) )
6 vex 𝑥 ∈ V
7 vex 𝑦 ∈ V
8 6 7 brcnv ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
9 8 a1i ( 𝜑 → ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 ) )
10 9 notbid ( 𝜑 → ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) )
11 10 ralbidv ( 𝜑 → ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ↔ ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ) )
12 7 6 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
13 12 a1i ( 𝜑 → ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 ) )
14 vex 𝑧 ∈ V
15 7 14 brcnv ( 𝑦 𝑅 𝑧𝑧 𝑅 𝑦 )
16 15 a1i ( 𝜑 → ( 𝑦 𝑅 𝑧𝑧 𝑅 𝑦 ) )
17 16 rexbidv ( 𝜑 → ( ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ↔ ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) )
18 13 17 imbi12d ( 𝜑 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
19 18 ralbidv ( 𝜑 → ( ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
20 11 19 anbi12d ( 𝜑 → ( ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ↔ ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) ) )
21 20 riotabidv ( 𝜑 → ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) ) )
22 5 21 eqtrd ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) ) )
23 2 22 eqtrid ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) ) )