Step |
Hyp |
Ref |
Expression |
1 |
|
infxpdom |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
2 |
1
|
3expa |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
3 |
2
|
adantrl |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐴 ∈ dom card ) |
5 |
|
numdom |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → 𝐵 ∈ dom card ) |
6 |
5
|
ad2ant2rl |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐵 ∈ dom card ) |
7 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐵 ≠ ∅ ) |
8 |
|
xpdom3 |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
9 |
4 6 7 8
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) ) |
10 |
|
sbth |
⊢ ( ( ( 𝐴 × 𝐵 ) ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |
11 |
3 9 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 ) |