Metamath Proof Explorer


Theorem infxpabs

Description: Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxpabs ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 )

Proof

Step Hyp Ref Expression
1 infxpdom ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )
2 1 3expa ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ 𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )
3 2 adantrl ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )
4 simpll ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → 𝐴 ∈ dom card )
5 numdom ( ( 𝐴 ∈ dom card ∧ 𝐵𝐴 ) → 𝐵 ∈ dom card )
6 5 ad2ant2rl ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → 𝐵 ∈ dom card )
7 simprl ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → 𝐵 ≠ ∅ )
8 xpdom3 ( ( 𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ 𝐵 ≠ ∅ ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )
9 4 6 7 8 syl3anc ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → 𝐴 ≼ ( 𝐴 × 𝐵 ) )
10 sbth ( ( ( 𝐴 × 𝐵 ) ≼ 𝐴𝐴 ≼ ( 𝐴 × 𝐵 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 )
11 3 9 10 syl2anc ( ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ 𝐵𝐴 ) ) → ( 𝐴 × 𝐵 ) ≈ 𝐴 )