Description: Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006) (Revised by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | infxpdom | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpdom2g | ⊢ ( ( 𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) | |
2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ) |
3 | infxpidm2 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) | |
4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
5 | domentr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) | |
6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 ) |