Metamath Proof Explorer


Theorem infxpdom

Description: Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion infxpdom ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 xpdom2g ( ( 𝐴 ∈ dom card ∧ 𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) )
2 1 3adant2 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) )
3 infxpidm2 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 )
4 3 3adant3 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 )
5 domentr ( ( ( 𝐴 × 𝐵 ) ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )
6 2 4 5 syl2anc ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴𝐵𝐴 ) → ( 𝐴 × 𝐵 ) ≼ 𝐴 )